55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary principles and synthetic biology: avoiding a molecular tragedy of the commons with an engineered phage

      research-article
      1 , 2 , 4 , 1 , 3 , 4 ,
      Journal of Biological Engineering
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In prior work, adding a gene to phage T7 that degraded the host K1 capsule facilitated growth when plated on capsulated hosts. However, the transgenic protein (an endosialidase) is expressed as an exoenzyme, released from the cell at lysis but unattached to the phage particle. There is thus the possibility that the gene will be subject to a tragedy of the commons and be selected against, if the enzyme benefits other genomes.

          Results

          This evolutionary perspective was supported in short term experiments. The genome carrying the endosialidase gene was favored on a capsulated host if grown in physical isolation of control genomes (lacking the gene) but was selected against otherwise.

          Conclusions

          These results challenge efforts to engineer phages with exoenzymes that degrade biofilm polymers. If biofilms do not facilitate spatially structured phage growth, the transgenic enzymes may be rapidly eliminated from the phage population after release in the environment, even if the transgene benefits overall phage growth on the biofilm.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Social evolution theory for microorganisms.

          Microorganisms communicate and cooperate to perform a wide range of multicellular behaviours, such as dispersal, nutrient acquisition, biofilm formation and quorum sensing. Microbiologists are rapidly gaining a greater understanding of the molecular mechanisms involved in these behaviours, and the underlying genetic regulation. Such behaviours are also interesting from the perspective of social evolution - why do microorganisms engage in these behaviours given that cooperative individuals can be exploited by selfish cheaters, who gain the benefit of cooperation without paying their share of the cost? There is great potential for interdisciplinary research in this fledgling field of sociomicrobiology, but a limiting factor is the lack of effective communication of social evolution theory to microbiologists. Here, we provide a conceptual overview of the different mechanisms through which cooperative behaviours can be stabilized, emphasizing the aspects most relevant to microorganisms, the novel problems that microorganisms pose and the new insights that can be gained from applying evolutionary theory to microorganisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dispersing biofilms with engineered enzymatic bacteriophage.

            Synthetic biology involves the engineering of biological organisms by using modular and generalizable designs with the ultimate goal of developing useful solutions to real-world problems. One such problem involves bacterial biofilms, which are crucial in the pathogenesis of many clinically important infections and are difficult to eradicate because they exhibit resistance to antimicrobial treatments and removal by host immune systems. To address this issue, we engineered bacteriophage to express a biofilm-degrading enzyme during infection to simultaneously attack the bacterial cells in the biofilm and the biofilm matrix, which is composed of extracellular polymeric substances. We show that the efficacy of biofilm removal by this two-pronged enzymatic bacteriophage strategy is significantly greater than that of nonenzymatic bacteriophage treatment. Our engineered enzymatic phage substantially reduced bacterial biofilm cell counts by approximately 4.5 orders of magnitude ( approximately 99.997% removal), which was about two orders of magnitude better than that of nonenzymatic phage. This work demonstrates the feasibility and benefits of using engineered enzymatic bacteriophage to reduce bacterial biofilms and the applicability of synthetic biology to an important medical and industrial problem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa.

              There has been extensive theoretical debate over whether population viscosity (limited dispersal) can favour cooperation. While limited dispersal increases the probability of interactions occurring between relatives, which can favour cooperation, it can also lead to an increase in competition between relatives and this can reduce or completely negate selection for cooperation. Despite much theoretical attention, there is a lack of empirical research investigating these issues. We cultured Pseudomonas aeruginosa bacteria in medium with different degrees of viscosity and examined the fitness consequences for a cooperative trait-the production of iron-scavenging siderophore molecules. We found that increasing viscosity of the growth medium (i) significantly limited bacterial dispersal and the diffusion of siderophore molecules and (ii) increased the fitness of individuals that produced siderophores relative to mutants that did not. We propose that viscosity favours siderophore-producing individuals in this system, because the benefits of siderophore production are more likely to accrue to relatives (i.e. greater indirect benefits), and, at the same time, bacteria are more likely to gain direct fitness benefits by taking up siderophore molecules produced by themselves (i.e. the trait becomes less cooperative). Our results suggest that viscosity of the microbial growth environment is a crucial factor determining the dynamics of wild-type bacteria and siderophore-deficient mutants in natural habitats, such as the viscous mucus in cystic fibrosis lung.
                Bookmark

                Author and article information

                Journal
                J Biol Eng
                J Biol Eng
                Journal of Biological Engineering
                BioMed Central
                1754-1611
                2012
                4 September 2012
                : 6
                : 13
                Affiliations
                [1 ]Section of Integrative Biology, The University of Texas, Austin, USA
                [2 ]Section of Molecular Genetics and Microbiology, The University of Texas, Austin, USA
                [3 ]Center for Computational Biology and Bioinformatics, The University of Texas, Austin, USA
                [4 ]The Institute for Cellular and Molecular Biology, , Austin, USA
                Article
                1754-1611-6-13
                10.1186/1754-1611-6-13
                3564837
                22947166
                f7fead78-9d3d-44c9-9218-d20a92a821db
                Copyright ©2012 Gladstone et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 May 2012
                : 22 July 2012
                Categories
                Research

                Biotechnology
                Biotechnology

                Comments

                Comment on this article