Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decoding intentions from movement kinematics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How do we understand the intentions of other people? There has been a longstanding controversy over whether it is possible to understand others’ intentions by simply observing their movements. Here, we show that indeed movement kinematics can form the basis for intention detection. By combining kinematics and psychophysical methods with classification and regression tree (CART) modeling, we found that observers utilized a subset of discriminant kinematic features over the total kinematic pattern in order to detect intention from observation of simple motor acts. Intention discriminability covaried with movement kinematics on a trial-by-trial basis, and was directly related to the expression of discriminative features in the observed movements. These findings demonstrate a definable and measurable relationship between the specific features of observed movements and the ability to discriminate intention, providing quantitative evidence of the significance of movement kinematics for anticipating others’ intentional actions.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Calculation of signal detection theory measures

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive coding: an account of the mirror neuron system.

            Is it possible to understand the intentions of other people by simply observing their actions? Many believe that this ability is made possible by the brain's mirror neuron system through its direct link between action and observation. However, precisely how intentions can be inferred through action observation has provoked much debate. Here we suggest that the function of the mirror system can be understood within a predictive coding framework that appeals to the statistical approach known as empirical Bayes. Within this scheme the most likely cause of an observed action can be inferred by minimizing the prediction error at all levels of the cortical hierarchy that are engaged during action observation. This account identifies a precise role for the mirror system in our ability to infer intentions from actions and provides the outline of the underlying computational mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuromechanical principles underlying movement modularity and their implications for rehabilitation.

              Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e., motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson's disease. Recent studies provide insights into the yet-unknown underlying neural mechanisms of motor modules, motor impairment, and motor learning and may lead to better understanding of the causal nature of modularity and its underlying neural substrates.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 November 2016
                2016
                : 6
                : 37036
                Affiliations
                [1 ]Department of Psychology, University of Torino , Torino, Italy
                [2 ]C’MON, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia , Genova, Italy
                [3 ]Department of Psychology, McGill University , Montréal, Canada
                Author notes
                Article
                srep37036
                10.1038/srep37036
                5109236
                27845434
                f7e18d25-5a7f-4778-85a3-fac497c13719
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 May 2016
                : 24 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content252

                Cited by56

                Most referenced authors110