46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PG9 is the founder member of an expanding family of glycan-dependent human antibodies that preferentially bind the HIV (HIV-1) envelope (Env) glycoprotein (gp) trimer and broadly neutralize the virus. Here, we show that a soluble SOSIP.664 gp140 trimer constructed from the Clade A BG505 sequence binds PG9 with high affinity (∼11 nM), enabling structural and biophysical characterizations of the PG9:Env trimer complex. The BG505 SOSIP.664 gp140 trimer is remarkably stable as assessed by electron microscopy (EM) and differential scanning calorimetry. EM, small angle X-ray scattering, size exclusion chromatography with inline multiangle light scattering and isothermal titration calorimetry all indicate that only a single PG9 fragment antigen-binding (Fab) binds to the Env trimer. An ∼18 Å EM reconstruction demonstrates that PG9 recognizes the trimer asymmetrically at its apex via contact with two of the three gp120 protomers, possibly contributing to its reported preference for a quaternary epitope. Molecular modeling and isothermal titration calorimetry binding experiments with an engineered PG9 mutant suggest that, in addition to the N156 and N160 glycan interactions observed in crystal structures of PG9 with a scaffolded V1/V2 domain, PG9 makes secondary interactions with an N160 glycan from an adjacent gp120 protomer in the antibody-trimer complex. Together, these structural and biophysical findings should facilitate the design of HIV-1 immunogens that possess all elements of the quaternary PG9 epitope required to induce broadly neutralizing antibodies against this region.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Determination of domain structure of proteins from X-ray solution scattering.

          An ab initio method for building structural models of proteins from x-ray solution scattering data is presented. Simulated annealing is employed to find a chain-compatible spatial distribution of dummy residues which fits the experimental scattering pattern up to a resolution of 0.5 nm. The efficiency of the method is illustrated by the ab initio reconstruction of models of several proteins, with known and unknown crystal structure, from experimental scattering data. The new method substantially improves the resolution and reliability of models derived from scattering data and makes solution scattering a useful technique in large-scale structural characterization of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular architecture of native HIV-1 gp120 trimers.

            The envelope glycoproteins (Env) of human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate virus binding to the cell surface receptor CD4 on target cells to initiate infection. Env is a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120), and forms trimers on the surface of the viral membrane. Using cryo-electron tomography combined with three-dimensional image classification and averaging, we report the three-dimensional structures of trimeric Env displayed on native HIV-1 in the unliganded state, in complex with the broadly neutralizing antibody b12 and in a ternary complex with CD4 and the 17b antibody. By fitting the known crystal structures of the monomeric gp120 core in the b12- and CD4/17b-bound conformations into the density maps derived by electron tomography, we derive molecular models for the native HIV-1 gp120 trimer in unliganded and CD4-bound states. We demonstrate that CD4 binding results in a major reorganization of the Env trimer, causing an outward rotation and displacement of each gp120 monomer. This appears to be coupled with a rearrangement of the gp41 region along the central axis of the trimer, leading to closer contact between the viral and target cell membranes. Our findings elucidate the structure and conformational changes of trimeric HIV-1 gp120 relevant to antibody neutralization and attachment to target cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antigenic structure of the HIV gp120 envelope glycoprotein.

              The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 12 2013
                March 12 2013
                March 12 2013
                February 20 2013
                : 110
                : 11
                : 4351-4356
                Article
                10.1073/pnas.1217537110
                3600498
                23426631
                f79ef679-4802-4671-941e-3202a1cff9a4
                © 2013
                History

                Comments

                Comment on this article