10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In schizophrenia, the structural changes in the cerebellum are associated with patients’ cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia.

          Methods

          Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes.

          Results

          Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia.

          Conclusion

          The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies.

          Clinical, experimental and neuroimaging studies indicate that the cerebellum is involved in neural processes beyond the motor domain. Cerebellar somatotopy has been shown for motor control, but topographic organization of higher-order functions has not yet been established. To determine whether existing literature supports the hypothesis of functional topography in the human cerebellum, we conducted an activation likelihood estimate (ALE) meta-analysis of neuroimaging studies reporting cerebellar activation in selected task categories: motor (n=7 studies), somatosensory (n=2), language (n=11), verbal working memory (n=8), spatial (n=8), executive function (n=8) and emotional processing (n=9). In agreement with previous investigations, sensorimotor tasks activated anterior lobe (lobule V) and adjacent lobule VI, with additional foci in lobule VIII. Motor activation was in VIIIA/B; somatosensory activation was confined to VIIIB. The posterior lobe was involved in higher-level tasks. ALE peaks were identified in lobule VI and Crus I for language and verbal working memory; lobule VI for spatial tasks; lobules VI, Crus I and VIIB for executive functions; and lobules VI, Crus I and medial VII for emotional processing. Language was heavily right-lateralized and spatial peaks left-lateralized, reflecting crossed cerebro-cerebellar projections. Language and executive tasks activated regions of Crus I and lobule VII proposed to be involved in prefrontal-cerebellar loops. Emotional processing involved vermal lobule VII, implicated in cerebellar-limbic circuitry. These data provide support for an anterior sensorimotor vs. posterior cognitive/emotional dichotomy in the human cerebellum. Prospective studies of multiple domains within single individuals are necessary to better elucidate neurobehavioral structure-function correlations in the cerebellar posterior lobe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ten simple rules for neuroimaging meta-analysis

            Neuroimaging has evolved into a widely used method to investigate the functional neuroanatomy, brain-behaviour relationships, and pathophysiology of brain disorders, yielding a literature of more than 30,000 papers. With such an explosion of data, it is increasingly difficult to sift through the literature and distinguish spurious from replicable findings. Furthermore, due to the large number of studies, it is challenging to keep track of the wealth of findings. A variety of meta-analytical methods (coordinate-based and image-based) have been developed to help summarise and integrate the vast amount of data arising from neuroimaging studies. However, the field lacks specific guidelines for the conduct of such meta-analyses. Based on our combined experience, we propose best-practice recommendations that researchers from multiple disciplines may find helpful. In addition, we provide specific guidelines and a checklist that will hopefully improve the transparency, traceability, replicability and reporting of meta-analytical results of neuroimaging data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects.

              Although structural brain alterations in schizophrenia have been demonstrated extensively, their quantitative distribution has not been studied over the last 14 years despite advances in neuroimaging. Moreover, a volumetric meta-analysis has not been conducted in antipsychotic-naive patients. Therefore, meta-analysis on cross-sectional volumetric brain alterations in both medicated and antipsychotic-naive patients was conducted. Three hundred seventeen studies published from September 1, 1998 to January 1, 2012 comprising over 9000 patients were selected for meta-analysis, including 33 studies in antipsychotic-naive patients. In addition to effect sizes, potential modifying factors such as duration of illness, sex composition, current antipsychotic dose, and intelligence quotient matching status of participants were extracted where available. In the sample of medicated schizophrenia patients (n = 8327), intracranial and total brain volume was significantly decreased by 2.0% (effect size d = -0.17) and 2.6% (d = -0.30), respectively. Largest effect sizes were observed for gray matter structures, with effect sizes ranging from -0.22 to -0.58. In the sample of antipsychotic-naive patients (n = 771), volume reductions in caudate nucleus (d = -0.38) and thalamus (d = -0.68) were more pronounced than in medicated patients. White matter volume was decreased to a similar extent in both groups, while gray matter loss was less extensive in antipsychotic-naive patients. Gray matter reduction was associated with longer duration of illness and higher dose of antipsychotic medication at time of scanning. Therefore, brain loss in schizophrenia is related to a combination of (early) neurodevelopmental processes-reflected in intracranial volume reduction-as well as illness progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                22 December 2022
                2022
                : 13
                : 1083480
                Affiliations
                Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University , Chengdu, China
                Author notes

                Edited by: Hengyi Cao, Feinstein Institute for Medical Research, United States

                Reviewed by: Sheeba Arnold, Carle Foundation Hospital, United States; Valentina Ciullo, Santa Lucia Foundation (IRCCS), Italy

                *Correspondence: Wenjing Zhang, wjzhang19@ 123456scu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2022.1083480
                9814486
                36620665
                f76d1372-2702-4865-8be6-357c5afa2792
                Copyright © 2022 Li, Liu, Yang, Zhang and Lui.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 October 2022
                : 28 November 2022
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 95, Pages: 10, Words: 6681
                Categories
                Psychiatry
                Systematic Review

                Clinical Psychology & Psychiatry
                cerebellum,schizophrenia,magnetic resonance imaging,cognition,gray matter volume

                Comments

                Comment on this article