13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction of a Tumor Immune Microenvironment-Related Prognostic Model in BRAF-Mutated Papillary Thyroid Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BRAF mutation is a representative oncogenic mutation, with a frequency of 60% in papillary thyroid carcinoma (PTC), but the reasons for the poor prognosis and more aggressive course of BRAF-mutated PTC are controversial. Tumor immune microenvironment (TIME) is an essential factor permitting the development and progression of malignancy, but whether TIME participates in the prognosis of BRAF-mutated PTC has not yet been reported. The primary goal of the present study was to provide a comprehensive TIME-related prognostic model to increase the predictive accuracy of progression-free survival (PFS) in patients with BRAF-mutated PTC. In this study, we analyzed the mRNA-seq data and corresponding clinical data of PTC patients obtained from the TCGA database. By calculating the TIME scores (immune score, stromal score and ESTIMATE score), the BRAF mutation group (n=237) was dichotomized into the high- and low-score groups. By functional analysis of differentially expressed genes (DEGs) in different high/low score groups, we identified 2 key TIME-related genes, HTR3A and NIPAL4, which affected PFS in BRAF-mutated PTC. A risk scoring system was developed by multivariate Cox analysis based on the abovementioned 2 TIME-related genes. Then, the BRAF-mutated cohort was divided into the high- and low-risk groups using the median risk score as a cutoff. A high risk score correlated positively with a higher HTR3A/NIPAL4 expression level but negatively with PFS in BRAF-mutated PTC. Ultimately, a nomogram was constructed by combining risk score with clinical parameter (Tumor stage), and the areas under the ROC curve (AUCs) of the nomogram for predicting 1-, 3- and 5-year PFS were then calculated and found to be 0.694, 0.707 and 0.738, respectively, indicating the improved accuracy and clinical utility of the nomogram versus the risk score model in the BRAF-mutated PTC cohort. Moreover, we determined the associations between prognostic genes or risk score and immune cell infiltration by two-way ANOVA. In the high-risk score, high HTR3A expression, and high NIPAL4 expression groups, higher infiltration of immune cells was found. Collectively, these findings confirm that the nomogram is effective in predicting the outcome of BRAF-mutated PTC and will add a spatial dimension to the developing risk stratification system.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Nomograms in oncology: more than meets the eye.

          Nomograms are widely used as prognostic devices in oncology and medicine. With the ability to generate an individual probability of a clinical event by integrating diverse prognostic and determinant variables, nomograms meet our desire for biologically and clinically integrated models and fulfill our drive towards personalised medicine. Rapid computation through user-friendly digital interfaces, together with increased accuracy, and more easily understood prognoses compared with conventional staging, allow for seamless incorporation of nomogram-derived prognosis to aid clinical decision making. This has led to the appearance of many nomograms on the internet and in medical journals, and an increase in nomogram use by patients and physicians alike. However, the statistical foundations of nomogram construction, their precise interpretation, and evidence supporting their use are generally misunderstood. This issue is leading to an under-appreciation of the inherent uncertainties regarding nomogram use. We provide a systematic, practical approach to evaluating and comprehending nomogram-derived prognoses, with particular emphasis on clarifying common misconceptions and highlighting limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The immune contexture in human tumours: impact on clinical outcome.

            Tumours grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokines, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumour progression, which can vary according to cancer type. In this Opinion article we discuss how the context-specific nature of infiltrating immune cells can affect the prognosis of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations of the BRAF gene in human cancer.

              Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                08 June 2022
                2022
                : 13
                : 895428
                Affiliations
                [1] 1 Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital , Chengdu, China
                [2] 2 School of Bioscience and Technology, Chengdu Medical College , Chengdu, China
                Author notes

                Edited by: Vasyl Vasko, Uniformed Services University of the Health Sciences, United States

                Reviewed by: Kirk Ernest Jensen, Uniformed Services University of the Health Sciences, United States; Maria Cecilia Mendonca Torres, Uniformed Services University of the Health Sciences, United States

                *Correspondence: Wenling Tu, tu.wenling@ 123456foxmail.com ; Yuhong Shi, shiyuhong89@ 123456hotmail.com

                †These authors share first authorship

                This article was submitted to Thyroid Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2022.895428
                9215106
                35757399
                f767e24c-f352-4305-99e5-6643b64fff41
                Copyright © 2022 Xia, Jiang, Huang, Liu, Huang, Zhang, Mei, Xu, Shi and Tu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 March 2022
                : 05 May 2022
                Page count
                Figures: 10, Tables: 2, Equations: 0, References: 52, Pages: 14, Words: 5663
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                braf,papillary thyroid cancer,prognostic model,nomogram,tumor-infiltrating immune cells

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content437

                Cited by6

                Most referenced authors1,422