The process of cancer initiation and development is regulated via the transcriptional expression of cells going under genomic and epigenetic changes. Targeting epigenetic "readers", i.e., bromodomains (BRD) and post-translational modifications of nucleosomal histone proteins regulate gene expression in both cancerous and healthy cells. In this study, the new epigenetic agent BRD inhibitor PLX51107 and histone deacetylase (HDAC) inhibitor SAHA' s (Vorinostat) single/combined applications' reflections were analyzed in case of cell proliferation, cytotoxicity, apoptosis, cell cycle arrest, and finally target gene expression regulation upon both AML and healthy B-lymphocyte cells; HL60 and NCIBL2171, respectively; in vitro. Since mono treatments of either Vorinostat or Plx51107 regulated cellular responses such as growth, proliferation, apoptosis, and cell cycle arrest of tumor cells; their combination treatments exerted accelerated results. We detected that combined treatment of Plx51107 and Vorinostat strengthened effects detected upon leukemic cells for gaining more sensitization to the agents, decreasing cell proliferation, dramatically inducing apoptosis, and cell cycle arrest; thus regulating target gene expressions. We have shown for the first time that the newly analyzed BRD inhibitor Plx51107 could be a promising therapeutic approach for hematological malignancies and its mono or combined usage might support a rapid transition to clinical trials.