7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

      1 , 2 , 3 , 4 , 4
      Clinical Chemistry
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine.

          Content

          In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine.

          Summary

          AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MIMIC-III, a freely accessible critical care database

          MIMIC-III (‘Medical Information Mart for Intensive Care’) is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-performance medicine: the convergence of human and artificial intelligence

            Eric Topol (2019)
            The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissecting racial bias in an algorithm used to manage the health of populations

              Health systems rely on commercial prediction algorithms to identify and help patients with complex health needs. We show that a widely used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black patients receiving additional help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than illness, but unequal access to care means that we spend less money caring for Black patients than for White patients. Thus, despite health care cost appearing to be an effective proxy for health by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of convenient, seemingly effective proxies for ground truth can be an important source of algorithmic bias in many contexts.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Clinical Chemistry
                Oxford University Press (OUP)
                0009-9147
                1530-8561
                November 01 2021
                November 01 2021
                November 01 2021
                November 01 2021
                November 01 2021
                November 01 2021
                : 67
                : 11
                : 1466-1482
                Affiliations
                [1 ]Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
                [2 ]Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
                [3 ]Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
                [4 ]Department of Laboratory Medicine, Yale University, New Haven, CT, USA
                Article
                10.1093/clinchem/hvab165
                34557917
                f7331f99-4866-496e-8374-da2c1890ace3
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article