In mammals, the unicellular zygote starts the process of embryogenesis and differentiates into all types of somatic cells, including both fetal and extraembryonic lineages—in a highly organized manner to eventually give rise to an entire multicellular organism comprising more than 200 different tissue types. This feature is referred to as totipotency. Upon fertilization, oocyte maternal factors epigenetically reprogram the genomes of the terminally differentiated oocyte and spermatozoon and turn the zygote into a totipotent cell. Today, we still do not fully understand the molecular properties of totipotency. In this review, we discuss recent findings on the molecular signature and mechanism of transcriptional regulation networks in the totipotent mouse embryo.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.