1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effectiveness of High-Frequency Repetitive Transcranial Magnetic Stimulation in Patients With Spinocerebellar Ataxia Type 3

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          LTP and LTD: an embarrassment of riches.

          LTP and LTD, the long-term potentiation and depression of excitatory synaptic transmission, are widespread phenomena expressed at possibly every excitatory synapse in the mammalian brain. It is now clear that "LTP" and "LTD" are not unitary phenomena. Their mechanisms vary depending on the synapses and circuits in which they operate. Here we review those forms of LTP and LTD for which mechanisms have been most firmly established. Examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies

            Background: Hereditary cerebellar ataxias (HCA) and hereditary spastic paraplegias (HSP) are two groups of neurodegenerative disorders that usually present with progressive gait impairment, often leading to permanent disability. Advances in genetic research in the last decades have improved their diagnosis and brought new possibilities for prevention and future treatments. Still, there is great uncertainty regarding their global epidemiology. Summary: Our objective was to assess the global distribution and prevalence of HCA and HSP by a systematic review and meta-analysis of prevalence studies. The MEDLINE, ISI Web of Science and Scopus databases were searched (1983-2013) for studies performed in well-defined populations and geographical regions. Two independent reviewers assessed the studies and extracted data and predefined methodological parameters. Overall, 22 studies were included, reporting on 14,539 patients from 16 countries. Multisource population-based studies yielded higher prevalence values than studies based primarily on hospitals or genetic centres. The prevalence range of dominant HCA was 0.0-5.6/10 5 , with an average of 2.7/10 5 (1.5-4.0/10 5 ). Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease was the most common dominant ataxia, followed by SCA2 and SCA6. The autosomal recessive (AR) HCA (AR-HCA) prevalence range was 0.0-7.2/10 5 , the average being 3.3/10 5 (1.8-4.9/10 5 ). Friedreich ataxia was the most frequent AR-HCA, followed by ataxia with oculomotor apraxia or ataxia-telangiectasia. The prevalence of autosomal dominant (AD) HSP (AD-HSP) ranged from 0.5 to 5.5/10 5 and that of AR-HSP from 0.0 to 5.3/10 5 , with pooled averages of 1.8/10 5 (95% CI: 1.0-2.7/10 5 ) and 1.8/10 5 (95% CI: 1.0-2.6/10 5 ), respectively. The most common AD-HSP form in every population was spastic paraplegia, autosomal dominant, type 4 (SPG4), followed by SPG3A, while SPG11 was the most frequent AR-HSP, followed by SPG15. In population-based studies, the number of families without genetic diagnosis after systematic testing ranged from 33 to 92% in the AD-HCA group, and was 40-46% in the AR-HCA, 45-67% in the AD-HSP and 71-82% in the AR-HSP groups. Key Messages: Highly variable prevalence values for HCA and HSP are reported across the world. This variation reflects the different genetic make-up of the populations, but also methodological heterogeneity. Large areas of the world remain without prevalence studies. From the available data, we estimated that around 1:10,000 people are affected by HCA or HSP. In spite of advances in genetic research, most families in population-based series remain without identified genetic mutation after extensive testing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.

              Repetitive transcranial magnetic stimulation (rTMS) is able to modulate the corticospinal excitability and the effects appear to last beyond the duration of the rTMS itself. Different studies, employing different rTMS parameters, report different modulation of corticospinal excitability ranging from inhibition to facilitation. Intraindividual variability of these effects and their reproducibility are unclear. We examined the modulatory effects of rTMS to the motor cortex at various frequencies (1, 10, 20 Hz) and at different time-points in twenty healthy volunteers. We observed significant inhibition of MEPs following 1 Hz rTMS and significant facilitation of MEPs following 20 Hz rTMS for both day1 and day 2. Interestingly, at 1 Hz and 20 Hz rTMS, the modulatory effect produced by rTMS was greater on day 2. However, there was no significant change in corticospinal excitability following 10 Hz rTMS neither on day 1 nor day 2. Our findings raise questions as to how stimulation parameters should be determined when conducting studies applying rTMS on multiple days, and in particular, studies exploring rTMS as a treatment modality in neuropsychiatric disorders.
                Bookmark

                Author and article information

                Journal
                The Journal of ECT
                J ECT
                Ovid Technologies (Wolters Kluwer Health)
                1533-4112
                1095-0680
                2023
                April 24 2023
                : Publish Ahead of Print
                Article
                10.1097/YCT.0000000000000925
                37145878
                f714ac61-66d1-409b-a795-26cb00867054
                © 2023
                History

                Comments

                Comment on this article