15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcranial Direct Current Stimulation Enhances Neuroplasticity and Accelerates Motor Recovery in a Stroke Mouse Model

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex.

          Methods:

          Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms.

          Results:

          Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulin-dependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCS-promoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker.

          Conclusions:

          The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background Stroke is a leading cause of mortality and disability worldwide and the economic costs of treatment and post-stroke care are substantial. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic, comparable method of quantifying health loss by disease, age, sex, year, and location to provide information to health systems and policy makers on more than 300 causes of disease and injury, including stroke. The results presented here are the estimates of burden due to overall stroke and ischaemic and haemorrhagic stroke from GBD 2016. Methods We report estimates and corresponding uncertainty intervals (UIs), from 1990 to 2016, for incidence, prevalence, deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs). DALYs were generated by summing YLLs and YLDs. Cause-specific mortality was estimated using an ensemble modelling process with vital registration and verbal autopsy data as inputs. Non-fatal estimates were generated using Bayesian meta-regression incorporating data from registries, scientific literature, administrative records, and surveys. The Socio-demographic Index (SDI), a summary indicator generated using educational attainment, lagged distributed income, and total fertility rate, was used to group countries into quintiles. Findings In 2016, there were 5·5 million (95% UI 5·3 to 5·7) deaths and 116·4 million (111·4 to 121·4) DALYs due to stroke. The global age-standardised mortality rate decreased by 36·2% (−39·3 to −33·6) from 1990 to 2016, with decreases in all SDI quintiles. Over the same period, the global age-standardised DALY rate declined by 34·2% (−37·2 to −31·5), also with decreases in all SDI quintiles. There were 13·7 million (12·7 to 14·7) new stroke cases in 2016. Global age-standardised incidence declined by 8·1% (−10·7 to −5·5) from 1990 to 2016 and decreased in all SDI quintiles except the middle SDI group. There were 80·1 million (74·1 to 86·3) prevalent cases of stroke globally in 2016; 41·1 million (38·0 to 44·3) in women and 39·0 million (36·1 to 42·1) in men. Interpretation Although age-standardised mortality rates have decreased sharply from 1990 to 2016, the decrease in age-standardised incidence has been less steep, indicating that the burden of stroke is likely to remain high. Planned updates to future GBD iterations include generating separate estimates for subarachnoid haemorrhage and intracerebral haemorrhage, generating estimates of transient ischaemic attack, and including atrial fibrillation as a risk factor. Funding Bill & Melinda Gates Foundation
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VEGF in Signaling and Disease: Beyond Discovery and Development

            The discovery of vascular endothelial-derived growth factor (VEGF) has revolutionized our understanding of vasculogenesis and angiogenesis during development and physiological homeostasis. Over a short span of two decades, our understanding of the molecular mechanisms by which VEGF coordinates neurovascular homeostasis has become more sophisticated. The central role of VEGF in the pathogenesis of diverse cancers and blinding eye diseases has also become evident. Elucidation of the molecular regulation of VEGF and the transformative development of multiple therapeutic pathways targeting VEGF directly or indirectly is a powerful case study of how fundamental research can guide innovation and translation. It is also an elegant example of how agnostic discovery and can transform our understanding of human disease. This review will highlight critical nodal points in VEGF biology including recent developments in immunotherapy for cancer and multi-target approaches in neovascular eye disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasticity during stroke recovery: from synapse to behaviour.

              Reductions in blood flow to the brain of sufficient duration and extent lead to stroke, which results in damage to neuronal networks and the impairment of sensation, movement or cognition. Evidence from animal models suggests that a time-limited window of neuroplasticity opens following a stroke, during which the greatest gains in recovery occur. Plasticity mechanisms include activity-dependent rewiring and synapse strengthening. The challenge for improving stroke recovery is to understand how to optimally engage and modify surviving neuronal networks, to provide new response strategies that compensate for tissue lost to injury.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Stroke
                Stroke
                Ovid Technologies (Wolters Kluwer Health)
                0039-2499
                1524-4628
                May 2022
                May 2022
                : 53
                : 5
                : 1746-1758
                Affiliations
                [1 ]Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy (V.L., S.A.B., A.R., F.P., M.B., M.R., M.G.D.D., M.V.P., C.G.).
                [2 ]Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Italy (F.M., F.A., F.V., P.M.R.).
                [3 ]eCampus University, Novedrate, Como, Italy (F.V.).
                [4 ]Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (M.V.P., C.G.).
                Article
                10.1161/STROKEAHA.121.034200
                35291824
                f700432b-2b56-467c-bb53-cc9abf9d9b46
                © 2022
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content188

                Cited by17

                Most referenced authors855