6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Biomechanical influence of plate configurations on mandible subcondylar fracture fixation: a finite element study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mandible subcondylar fractures have very high complication rate, yet there is no consensus on suitable plate design for optimal patient outcomes. Our study is aimed at comparing single mini, trapezoid, lambda, strut and double mini plates. A finite-element (FE) model of intact mandible was developed based on healthy CT-scan data, which was further virtually osteotomized and fixated with plates. The cortical and cancellous bones were assigned region-specific orthotropic and heterogenous isotropic material properties respectively. The models were subjected to six load cases representing the mastication cycle. Under opposite lateralities, the tensile and compressive mandibular strain distributions were found as the opposite, with tensile strains at the posterior border under ipsilateral molar clenching (RMOL) resulting in lesser mandibular strain in reconstructed mandible with single mini plate under RMOL but highest mandibular strain under the contralateral molar clenching (LMOL). Owing to the reduced mandibular strains under LMOL than RMOL, the contralateral chewing is preferred during the immediate post-surgery period for patients. Under LMOL, the peak von Mises stresses in the plate decreased with increase in the number of screws. Furthermore, the presence of two arms in double mini and trapezoid plates seems beneficial to neutralise the tensile and compressive strains across load cases.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          Journal
          Medical & Biological Engineering & Computing
          Med Biol Eng Comput
          Springer Science and Business Media LLC
          0140-0118
          1741-0444
          October 2023
          May 26 2023
          October 2023
          : 61
          : 10
          : 2581-2591
          Article
          10.1007/s11517-023-02854-7
          37233860
          f6ed8221-d928-488f-8218-c3686a2f7c7b
          © 2023

          https://www.springernature.com/gp/researchers/text-and-data-mining

          https://www.springernature.com/gp/researchers/text-and-data-mining

          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content5,477

          Cited by2