17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topical biomaterials to prevent post-tonsillectomy hemorrhage

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite advances in surgical technique, postoperative hemorrhage remains a common cause of mortality and morbidity for patients following tonsillectomy. Application of biomaterials at the time of tonsillectomy can potentially accelerate mucosal wound healing and eliminate the risk of post-tonsillectomy hemorrhage (PTH). To understand the current state and identify possible routes for the development of the ideal biomaterials to prevent PTH, topical biomaterials for eliminating the risk of PTH were reviewed. Alternative topical biomaterials that hold the potential to reduce the risk of PTH were also summarized.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Biodegradation, biodistribution and toxicity of chitosan.

          Chitosan is a natural polysaccharide that has attracted significant scientific interest during the last two decades. It is a potentially biologically compatible material that is chemically versatile (-NH2 groups and various M(w)). These two basic properties have been used by drug delivery and tissue engineering scientists to create a plethora of formulations and scaffolds that show promise in healthcare. Despite the high number of published studies, chitosan is not approved by the FDA for any product in drug delivery, and as a consequence very few biotech companies are using this material. This review will aim to provide information on these biological properties that affect chitosan's safe use in drug delivery. The term "Chitosan" represents a large group of structurally different chemical entities that may show different biodistribution, biodegradation and toxicological profiles. Here we aim to review research in this area and critically discuss chitosan's potential to be used as a generally regarded as safe (GRAS) material. 2009 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibrin gels and their clinical and bioengineering applications.

            Fibrin gels, prepared from fibrinogen and thrombin, the key proteins involved in blood clotting, were among the first biomaterials used to prevent bleeding and promote wound healing. The unique polymerization mechanism of fibrin, which allows control of gelation times and network architecture by variation in reaction conditions, allows formation of a wide array of soft substrates under physiological conditions. Fibrin gels have been extensively studied rheologically in part because their nonlinear elasticity, characterized by soft compliance at small strains and impressive stiffening to resist larger deformations, appears essential for their function as haemostatic plugs and as matrices for cell migration and wound healing. The filaments forming a fibrin network are among the softest in nature, allowing them to deform to large extents and stiffen but not break. The biochemical and mechanical properties of fibrin have recently been exploited in numerous studies that suggest its potential for applications in medicine and bioengineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis and antibacterial activities of quaternary ammonium salt of chitosan.

              Chitosan derivatives with quaternary ammonium salt, such as N,N,N-trimethyl chitosan, N-N-propyl-N,N-dimethyl chitosan and N-furfuryl-N,N-dimethyl chitosan were prepared using different 96% deacetylated chitosan of M(v) 2.14x10(5), 1.9x10(4), 7.8x10(3). Amino groups on chitosan react with aldehydes to from a Schiff base intermediate. Quaternized chitosan were obtained by reaction of a Schiff base with methyl iodide. The yields, degree of quaternization and water-solubility of quaternized chitosan were influenced by the molecular weight of the chitosan sample. The antibacterial activities of quaternized chitosan against Escherichia coli were explored by calculation of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in water, 0.25 and 0.50% acetic acid medium. Results show the antibacterial activities of quaternized chitosan against E. coli is related to its molecular weight. Antibacterial activities of quaternized chitosan in acetic acid medium is stronger than that in water. Their antibacterial activities is increased as the concentration of acetic acid is increased. It was also found that the antibacterial activity of quaternized chitosan against E. coli is stronger than that of chitosan.
                Bookmark

                Author and article information

                Contributors
                Tendy.Chiang@NationwideChildrens.org
                Journal
                J Otolaryngol Head Neck Surg
                J Otolaryngol Head Neck Surg
                Journal of Otolaryngology - Head & Neck Surgery
                BioMed Central (London )
                1916-0208
                1916-0216
                6 September 2019
                6 September 2019
                2019
                : 48
                : 45
                Affiliations
                [1 ]ISNI 0000 0004 0392 3476, GRID grid.240344.5, Center of Regenerative Medicine, , Research Institute at Nationwide Children’s Hospital, ; Columbus, OH USA
                [2 ]ISNI 0000 0001 2285 7943, GRID grid.261331.4, College of Medicine, , The Ohio State University, ; Columbus, OH USA
                [3 ]ISNI 0000 0004 0392 3476, GRID grid.240344.5, Department of Pediatric Otorhinolaryngology, , Nationwide Children’s Hospital, ; Columbus, OH USA
                [4 ]GRID grid.436793.c, Nanofiber Solutions, ; Hilliard, OH USA
                Article
                368
                10.1186/s40463-019-0368-1
                6731608
                31492172
                f6e9a940-d683-438b-adaa-350f949171d9
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 May 2019
                : 27 August 2019
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                post-tonsillectomy hemorrhage,biomaterial,topical,surgical hemostasis,tonsillectomy

                Comments

                Comment on this article