42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Liquid-mediated dense integration of graphene materials for compact capacitive energy storage.

      Science (New York, N.Y.)
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porous yet densely packed carbon electrodes with high ion-accessible surface area and low ion transport resistance are crucial to the realization of high-density electrochemical capacitive energy storage but have proved to be very challenging to produce. Taking advantage of chemically converted graphene's intrinsic microcorrugated two-dimensional configuration and self-assembly behavior, we show that such materials can be readily formed by capillary compression of adaptive graphene gel films in the presence of a nonvolatile liquid electrolyte. This simple soft approach enables subnanometer scale integration of graphene sheets with electrolytes to form highly compact carbon electrodes with a continuous ion transport network. Electrochemical capacitors based on the resulting films can obtain volumetric energy densities approaching 60 watt-hours per liter.

          Related collections

          Author and article information

          Journal
          23908233
          10.1126/science.1239089

          Comments

          Comment on this article

          scite_