1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic epidemiology of Mycobacterium avium subsp. paratuberculosis isolates from Canadian dairy herds provides evidence for multiple infection events

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen responsible for paratuberculosis or Johne’s Disease (JD) in ruminants, which is responsible for substantial economic losses worldwide. MAP transmission primarily occurs through the fecal-oral route, and the introduction of an MAP infected animal into a herd is an important transmission route. In the current study, we characterized MAP isolates from 67 cows identified in 20 herds from the provinces of Quebec and Ontario, Canada. Whole genome sequencing (WGS) was performed and an average genome coverage (relative to K-10) of ∼14.9 fold was achieved. The total number of SNPs present in each isolate varied from 51 to 132 and differed significantly between herds. Isolates with the highest genetic variability were generally present in herds from Quebec. The isolates were broadly separated into two main clades and this distinction was not influenced by the province from which they originated. Analysis of 8 MIRU-VNTR loci and 11 SSR loci was performed on the 67 isolates from the 20 dairy herds and publicly available references, notably major genetic lineages and six isolates from the province of Newfoundland and Labrador. All 67 field isolates were phylogenetically classified as Type II (C-type) and according to MIRU-VNTR, the predominant type was INMV 2 (76.1%) among four distinct patterns. Multilocus SSR typing identified 49 distinct INMV SSR patterns. The discriminatory index of the multilocus SSR typing was 0.9846, which was much higher than MIRU-VNTR typing (0.3740). Although multilocus SSR analysis provides good discriminatory power, the resolution was not informative enough to determine inter-herd transmission. In select cases, SNP-based analysis was the only approach able to document disease transmission between herds, further validated by animal movement data. The presence of SNPs in several virulence genes, notably for PE, PPE, mce and mmpL, is expected to explain differential antigenic or pathogenetic host responses. SNP-based studies will provide insight into how MAP genetic variation may impact host-pathogen interactions. Our study highlights the informative power of WGS which is now recommended for epidemiological studies and to document mixed genotypes infections.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

          Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

            The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              fastp: an ultra-fast all-in-one FASTQ preprocessor

              Abstract Motivation Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming and quality filtering. These tools are often insufficiently fast as most are developed using high-level programming languages (e.g. Python and Java) and provide limited multi-threading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per-read quality pruning and many other operations with a single scan of the FASTQ data. This tool is developed in C++ and has multi-threading support. Based on our evaluation, fastp is 2–5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and implementation The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                02 February 2023
                2023
                : 14
                : 1043598
                Affiliations
                [1] 1 Department of Biology , Memorial University of Newfoundland , St. John’s, NL, Canada
                [2] 2 Sherbrooke Research and Development Centre , Agriculture and Agri-Food Canada , Sherbrooke, QC, Canada
                [3] 3 INRAE , ISP , Université de Tours , Nouzilly, France
                Author notes

                Edited by: Johann Sölkner, University of Natural Resources and Life Sciences Vienna, Austria

                Reviewed by: Christophe Ginevra, Hospices Civils de Lyon, France

                Stephen V. Gordon, University College Dublin, Ireland

                *Correspondence: Nathalie Bissonnette, nathalie.bissonnette@ 123456agr.gc.ca

                This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics

                Article
                1043598
                10.3389/fgene.2023.1043598
                9934062
                36816022
                f6e5a632-e0e1-4128-a500-a2214732c461
                Copyright © 2023 Byrne, Ollier, Tahlan, Biet and Bissonnette.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 September 2022
                : 18 January 2023
                Funding
                Funded by: Agriculture and Agri-Food Canada , doi 10.13039/501100000040;
                Award ID: J-000075 J-000079 J-002095
                Funded by: Dairy Farmers of Canada Canadian Agricultural Partnership AgriScience Program Dairy Research Cluster 3 Activity 9 , doi 10.13039/100010710;
                Funded by: Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement GalactINOV , doi 10.13039/501100022077;
                This research was supported by a contribution from Agriculture and Agri-Food Canada for collecting biological samples and phenotypes during two overlapping longitudinal studies (J-000075 and J-000079, NB). The microbiological cultures and WGS analysis were supported by the Dairy Research Cluster 3 Activity 9 (Dairy Farmers of Canada, Canadian Dairy Network and Agriculture and Agri-Food Canada J-002095, NB and KT) under the Canadian Agricultural Partnership AgriScience Program. The MIRU-VNTR typing was supported by the GALACTINOV funding (NB and FB). Memorial University of Newfoundland also provided student support to AB. As per the research agreement, aside from providing financial support, the funders have no role in the design and conduct of the studies, data collection and analysis or interpretation of the data. Researchers maintain independence in conducting their studies, own their data, and report the outcomes regardless of the results. The decision to publish findings rests solely with the researchers.
                Categories
                Genetics
                Original Research

                Genetics
                mycobacterium avium subsp. paratuberculosis,whole genome sequencing (wgs),molecular epidemiology,phylogenetic snp based analysis,strain typing,miru-vntr analysis,mlssr typing,john’s disease

                Comments

                Comment on this article