0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetic and pharmacodynamic herb-drug interactions—part I. Herbal medicines of the central nervous system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unlike conventional drug substances, herbal medicines are composed of a complex of biologically active compounds. Therefore, the potential occurrence of herb-drug interactions is even more probable than for drug-drug interactions. Interactions can occur on both the pharmacokinetic and pharmacodynamic level. Herbal medicines may affect the resulting efficacy of the concomitantly used (synthetic) drugs, mainly on the pharmacokinetic level, by changing their absorption, distribution, metabolism, and excretion. Studies on the pharmacodynamic interactions of herbal medicines and conventional drugs are still very limited. This interaction level is related to the mechanism of action of different plant constituents. Herb-drug interactions can cause changes in drug levels and activities and lead to therapeutic failure and/or side effects (sometimes toxicities, even fatal). This review aims to provide a summary of recent information on the potential drug interactions involving commonly used herbal medicines that affect the central nervous system ( Camellia, Valeriana, Ginkgo, Hypericum, Humulus, Cannabis) and conventional drugs. The survey databases were used to identify primary scientific publications, case reports, and secondary databases on interactions were used later on as well. Search keywords were based on plant names (botanical genera), officinal herbal drugs, herbal drug preparations, herbal drug extracts.

          Related collections

          Most cited references245

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach

          Background Scoping reviews are a relatively new approach to evidence synthesis and currently there exists little guidance regarding the decision to choose between a systematic review or scoping review approach when synthesising evidence. The purpose of this article is to clearly describe the differences in indications between scoping reviews and systematic reviews and to provide guidance for when a scoping review is (and is not) appropriate. Results Researchers may conduct scoping reviews instead of systematic reviews where the purpose of the review is to identify knowledge gaps, scope a body of literature, clarify concepts or to investigate research conduct. While useful in their own right, scoping reviews may also be helpful precursors to systematic reviews and can be used to confirm the relevance of inclusion criteria and potential questions. Conclusions Scoping reviews are a useful tool in the ever increasing arsenal of evidence synthesis approaches. Although conducted for different purposes compared to systematic reviews, scoping reviews still require rigorous and transparent methods in their conduct to ensure that the results are trustworthy. Our hope is that with clear guidance available regarding whether to conduct a scoping review or a systematic review, there will be less scoping reviews being performed for inappropriate indications better served by a systematic review, and vice-versa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019

            This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cytochrome P450 Structure, Function and Clinical Significance: A Review

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                15 November 2023
                2023
                : 11
                : e16149
                Affiliations
                [1 ]Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava , Bratislava, Slovak Republic
                [2 ]Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University , Hradec Králové, Czech Republic
                Author information
                http://orcid.org/0000-0002-4634-3311
                http://orcid.org/0000-0002-6417-9586
                Article
                16149
                10.7717/peerj.16149
                10656908
                f6aab004-036f-4ce1-9993-0124403186d9
                © 2023 Czigle et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 17 May 2023
                : 30 August 2023
                Funding
                Funded by: Erasmus+ Programme of the European Union, Key Action 2: Strategic Partnerships
                Award ID: 2020-1-CZ01-KA203-078218 (the Open Access Educational Materials on Naturally Occurring Molecules)
                This open-access review article was supported by the Erasmus+ Programme of the European Union, Key Action 2: Strategic Partnerships, Project No. 2020-1-CZ01-KA203-078218 (the Open Access Educational Materials on Naturally Occurring Molecules). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Plant Science
                Evidence Based Medicine
                Pharmacology

                herbal medicine-drug interaction,pharmacokinetic,pharmacodynamic,camellia,valeriana,ginkgo,hypericum,humulus,cannabis,review

                Comments

                Comment on this article