1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep learning system for screening AIDS-related cytomegalovirus retinitis with ultra-wide-field fundus images

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ophthalmological screening for cytomegalovirus retinitis (CMVR) for HIV/AIDS patients is important to prevent lifelong blindness. Previous studies have shown good properties of automated CMVR screening using digital fundus images. However, the application of a deep learning (DL) system to CMVR with ultra-wide-field (UWF) fundus images has not been studied, and the feasibility and efficiency of this method are uncertain.

          Methods

          In this study, we developed, internally validated, externally validated, and prospectively validated a DL system to detect AIDS-related from UWF fundus images from different clinical datasets. We independently used the InceptionResnetV2 network to develop and internally validate a DL system for identifying active CMVR, inactive CMVR, and non-CMVR in 6960 UWF fundus images from 862 AIDS patients and validated the system in a prospective and an external validation data set using the area under the curve (AUC), accuracy, sensitivity, and specificity. A heat map identified the most important area (lesions) used by the DL system for differentiating CMVR.

          Results

          The DL system showed AUCs of 0.945 (95 % confidence interval [CI]: 0.929, 0.962), 0.964 (95 % CI: 0.870, 0.999) and 0.968 (95 % CI: 0.860, 1.000) for detecting active CMVR from non-CMVR and 0.923 (95 % CI: 0.908, 0.938), 0.902 (0.857, 0.948) and 0.884 (0.851, 0.917) for detecting active CMVR from non-CMVR in the internal cross-validation, external validation, and prospective validation, respectively. Deep learning performed promisingly in screening CMVR. It also showed the ability to differentiate active CMVR from non-CMVR and inactive CMVR as well as to identify active CMVR and inactive CMVR from non-CMVR (all AUCs in the three independent data sets >0.900). The heat maps successfully highlighted lesion locations.

          Conclusions

          Our UWF fundus image-based DL system showed reliable performance for screening AIDS-related CMVR showing its potential for screening CMVR in HIV/AIDS patients, especially in the absence of ophthalmic resources.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A survey on deep learning in medical image analysis

          Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

            Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning

              The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                15 May 2024
                30 May 2024
                15 May 2024
                : 10
                : 10
                : e30881
                Affiliations
                [a ]Department of Ophthalmology, Beijing Youan Hospital, Capital Medical University, Beijing, China
                [b ]Beijing Tongren Eye Centre, Beijing Key Laboratory of Intraocular Tumour Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
                [c ]Chongqing Chang'an Industrial Group Co. Ltd, Chongqing, China
                Author notes
                [* ]Corresponding author. Beijing Tongren Hospital, Dong Jiao Min Xiang, Dong Cheng District, 100730 Beijing, China. weiwenbintr@ 123456163.com
                [** ]Corresponding author. Beijing You'an Hospital, No.8, Xi Tou Tiao, Youanmen wai, Fengtai District, 100069, Beijing, China. hongweiyanke@ 123456163.com
                [1]

                These authors contributed equally to this manuscript.

                Article
                S2405-8440(24)06912-3 e30881
                10.1016/j.heliyon.2024.e30881
                11128864
                38803983
                f699fdde-fa8b-4074-91f7-a5b6bca8e67f
                © 2024 The Authors

                This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

                History
                : 3 December 2023
                : 3 May 2024
                : 7 May 2024
                Categories
                Research Article

                aids,cytomegalovirus retinitis,deep learning,ultra-wide-field image,heat maps

                Comments

                Comment on this article