29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Potential of Regulatory T Cell Therapy in Liver Diseases: An Overview and Current Perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg). The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis, or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients. Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment, and good manufacturing practice facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases (AILD), chronic rejection, and posttransplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases, and solid organ transplantations. There have not been any new therapies for the AILD for more than three decades; thus, the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior, and microenvironment of Treg before applying the cells to the patients.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.

          Naturally arising CD25(+)CD4(+) regulatory T cells actively maintain immunological self-tolerance. Deficiency in or dysfunction of these cells can be a cause of autoimmune disease. A reduction in their number or function can also elicit tumor immunity, whereas their antigen-specific population expansion can establish transplantation tolerance. They are therefore a good target for designing ways to induce or abrogate immunological tolerance to self and non-self antigens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A function for interleukin 2 in Foxp3-expressing regulatory T cells.

            Regulatory T cells (T(reg) cells) expressing the forkhead family transcription factor Foxp3 are critical mediators of dominant immune tolerance to self. Most T(reg) cells constitutively express the high-affinity interleukin 2 (IL-2) receptor alpha-chain (CD25); however, the precise function of IL-2 in T(reg) cell biology has remained controversial. To directly assess the effect of IL-2 signaling on T(reg) cell development and function, we analyzed mice containing the Foxp3(gfp) knock-in allele that were genetically deficient in either IL-2 (Il2(-/-)) or CD25 (Il2ra(-/-)). We found that IL-2 signaling was dispensable for the induction of Foxp3 expression in thymocytes from these mice, which indicated that IL-2 signaling does not have a nonredundant function in the development of T(reg) cells. Unexpectedly, Il2(-/-) and Il2ra(-/-) T(reg) cells were fully able to suppress T cell proliferation in vitro. In contrast, Foxp3 was not expressed in thymocytes or peripheral T cells from Il2rg(-/-) mice. Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism. Thus, IL-2 signaling seems to be critically required for maintaining the homeostasis and competitive fitness of T(reg) cells in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-2 and regulatory T cells in graft-versus-host disease.

              Dysfunction of regulatory T (Treg) cells has been detected in diverse inflammatory disorders, including chronic graft-versus-host disease (GVHD). Interleukin-2 is critical for Treg cell growth, survival, and activity. We hypothesized that low-dose interleukin-2 could preferentially enhance Treg cells in vivo and suppress clinical manifestations of chronic GVHD. In this observational cohort study, patients with chronic GVHD that was refractory to glucocorticoid therapy received daily low-dose subcutaneous interleukin-2 (0.3×10(6), 1×10(6), or 3×10(6) IU per square meter of body-surface area) for 8 weeks. The end points were safety and clinical and immunologic response. After a 4-week hiatus, patients with a response could receive interleukin-2 for an extended period. A total of 29 patients were enrolled. None had progression of chronic GVHD or relapse of a hematologic cancer. The maximum tolerated dose of interleukin-2 was 1×10(6) IU per square meter. The highest dose level induced unacceptable constitutional symptoms. Of the 23 patients who could be evaluated for response, 12 had major responses involving multiple sites. The numbers of CD4+ Treg cells were preferentially increased in all patients, with a peak median value, at 4 weeks, that was more than eight times the baseline value (P<0.001), without affecting CD4+ conventional T (Tcon) cells. The Treg:Tcon ratio increased to a median of more than five times the baseline value (P<0.001). The Treg cell count and Treg:Tcon ratio remained elevated at 8 weeks (P<0.001 for both comparisons with baseline values), then declined when the patients were not receiving interleukin-2. The increased numbers of Treg cells expressed the transcription factor forkhead box P3 (FOXP3) and could inhibit autologous Tcon cells. Immunologic and clinical responses were sustained in patients who received interleukin-2 for an extended period, permitting the glucocorticoid dose to be tapered by a mean of 60% (range, 25 to 100). Daily low-dose interleukin-2 was safely administered in patients with active chronic GVHD that was refractory to glucocorticoid therapy. Administration was associated with preferential, sustained Treg cell expansion in vivo and amelioration of the manifestations of chronic GVHD in a substantial proportion of patients. (Funded by a Dana-Farber Dunkin' Donuts Rising Star award and others; ClinicalTrials.gov number, NCT00529035.).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                06 September 2016
                2016
                : 7
                : 334
                Affiliations
                [1] 1NIHR Biomedical Research Unit in Liver Diseases, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham, UK
                [2] 2Liver and Hepatobiliary Unit, University Hospital NHS Foundation Trust , Birmingham, UK
                Author notes

                Edited by: Nurit Hollander, Tel Aviv University, Israel

                Reviewed by: Paolo Puccetti, University of Perugia, Italy; Duncan Howie, University of Oxford, UK

                *Correspondence: Ye Htun Oo, Y.H.Oo@ 123456bham.ac.uk

                Hannah C. Jeffery and Manjit Kaur Braitch contributed equally.

                Specialty section: This article was submitted to Immunotherapies and Vaccines, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00334
                5012133
                27656181
                f681c63b-b16d-4973-ad0c-8f6f6c2b868e
                Copyright © 2016 Jeffery, Braitch, Brown and Oo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 July 2016
                : 19 August 2016
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 95, Pages: 13, Words: 10090
                Funding
                Funded by: Medical Research Council 10.13039/501100000265
                Award ID: G1002552
                Funded by: National Institute for Health Research 10.13039/501100000272
                Categories
                Immunology
                Review

                Immunology
                regulatory t cells,microenvironment,metabolites,microbes
                Immunology
                regulatory t cells, microenvironment, metabolites, microbes

                Comments

                Comment on this article