28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting the tumor vasculature to enhance T cell activity

      review-article
      1 , 1 , 1 , 2 , 3
      Current Opinion in Immunology
      Elsevier

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Tumor vessels form a physical barrier that hampers intratumoral T cell trafficking.

          • Tumor endothelial cells can directly kill T cells or suppress their activity.

          • Normalization of the tumor endothelial barrier enhances T cell infiltration and activity.

          • Tumor vascular targeting synergizes with active and adoptive immunotherapies.

          Abstract

          T cells play a critical role in tumor immune surveillance as evidenced by extensive mouse-tumor model studies as well as encouraging patient responses to adoptive T cell therapies and dendritic cell vaccines. It is well established that the interplay of tumor cells with their local cellular environment can trigger events that are immunoinhibitory to T cells. More recently it is emerging that the tumor vasculature itself constitutes an important barrier to T cells. Endothelial cells lining the vessels can suppress T cell activity, target them for destruction, and block them from gaining entry into the tumor in the first place through the deregulation of adhesion molecules. Here we review approaches to break this tumor endothelial barrier and enhance T cell activity.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Inducible apoptosis as a safety switch for adoptive cell therapy.

          Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct. We tested the activity of our safety switch by introducing the gene into donor T cells given to enhance immune reconstitution in recipients of haploidentical stem-cell transplants. Patients received AP1903, an otherwise bioinert small-molecule dimerizing drug, if graft-versus-host disease (GVHD) developed. We measured the effects of AP1903 on GVHD and on the function and persistence of the cells containing the iCasp9 safety switch. Five patients between the ages of 3 and 17 years who had undergone stem-cell transplantation for relapsed acute leukemia were treated with the genetically modified T cells. The cells were detected in peripheral blood from all five patients and increased in number over time, despite their constitutive transgene expression. A single dose of dimerizing drug, given to four patients in whom GVHD developed, eliminated more than 90% of the modified T cells within 30 minutes after administration and ended the GVHD without recurrence. The iCasp9 cell-suicide system may increase the safety of cellular therapies and expand their clinical applications. (Funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute; ClinicalTrials.gov number, NCT00710892.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection.

            To investigate the prognostic value of tumor-infiltrating lymphocytes (TILs), especially regulatory T cells (Tregs), in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, Foxp3-positive, and granzyme B-positive TILs were assessed by immunohistochemistry in tissue microarrays containing HCC from 302 patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Cox regression and Kaplan-Meier analysis using median values as cutoff. CD3+, CD4+, CD8+ TILs were associated with neither overall survival (OS) nor disease-free survival (DFS). The presence of low intratumoral Tregs in combination with high intratumoral activated CD8+ cytotoxic cells (CTLs), a balance toward CTLs, was an independent prognostic factor for both improved DFS (P = .001) and OS (P < .0001). Five-year OS and DFS rates were only 24.1% and 19.8% for the group with intratumoral high Tregs and low activated CTLs, compared with 64.0% and 59.4% for the group with intratumoral low Tregs and high activated CTLs, respectively. Either intratumoral Tregs alone (P = .001) or intratumoral activated CTLs (P = .001) alone is also an independent predictor for OS. In addition, high Tregs density was associated with both absence of tumor encapsulation (P = .032) and presence of tumor vascular invasion (P = .031). Tregs are associated with HCC invasiveness, and intratumoral balance of regulatory and cytotoxic T cells is a promising independent predictor for recurrence and survival in HCC. A combination of depletion of Tregs and concomitant stimulation of effector T cells may be an effective immunotherapy to reduce recurrence and prolong survival after surgery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer.

              Mutations in the tumor-suppressor gene VHL cause oversecretion of vascular endothelial growth factor by clear-cell renal carcinomas. We conducted a clinical trial to evaluate bevacizumab, a neutralizing antibody against vascular endothelial growth factor, in patients with metastatic renal-cell carcinoma. A randomized, double-blind, phase 2 trial was conducted comparing placebo with bevacizumab at doses of 3 and 10 mg per kilogram of body weight, given every two weeks; the time to progression of disease and the response rate were primary end points. Crossover from placebo to antibody treatment was allowed, and survival was a secondary end point. Minimal toxic effects were seen, with hypertension and asymptomatic proteinuria predominating. The trial was stopped after the interim analysis met the criteria for early stopping. With 116 patients randomly assigned to treatment groups (40 to placebo, 37 to low-dose antibody, and 39 to high-dose antibody), there was a significant prolongation of the time to progression of disease in the high-dose--antibody group as compared with the placebo group (hazard ratio, 2.55; P 0.20 for all comparisons). Bevacizumab can significantly prolong the time to progression of disease in patients with metastatic renal-cell cancer. Copyright 2003 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Opin Immunol
                Curr. Opin. Immunol
                Current Opinion in Immunology
                Elsevier
                0952-7915
                1879-0372
                1 April 2015
                April 2015
                : 33
                : 55-63
                Affiliations
                [1 ]Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
                [2 ]Department of Oncology, University Hospital of Lausanne (CHUV), CH-1015 Lausanne, Switzerland
                [3 ]Ovarian Cancer Research Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
                Article
                S0952-7915(15)00012-6
                10.1016/j.coi.2015.01.011
                4896929
                25665467
                f68122c3-bf0a-4c82-8c31-3885d9d5a0a3
                © 2015 Elsevier Ltd. All rights reserved.
                History
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article