28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heat Exposure, Cardiovascular Stress and Work Productivity in Rice Harvesters in India: Implications for a Climate Change Future

      , ,
      Industrial Health
      National Institute of Industrial Health

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Workplace heat stress, health and productivity – an increasing challenge for low and middle-income countries during climate change

          Background Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. Objectives To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. Design A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. Results In countries with very hot seasons, workers are already affected by working environments hotter than that with which human physiological mechanisms can cope. To protect workers from excessive heat, a number of heat exposure indices have been developed. One that is commonly used in occupational health is the Wet Bulb Globe Temperature (WBGT). We use WBGT to illustrate assessing the proportion of a working hour during which a worker can sustain work and the proportion of that same working hour that (s)he needs to rest to cool the body down and maintain core body temperature below 38°C. Using this proportion a ‘work capacity’ estimate was calculated for selected heat exposure levels and work intensity levels. The work capacity rapidly reduces as the WBGT exceeds 26–30°C and this can be used to estimate the impact of increasing heat exposure as a result of climate change in tropical countries. Conclusions One result of climate change is a reduced work capacity in heat-exposed jobs and greater difficulty in achieving economic and social development in the countries affected by this somewhat neglected impact of climate change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The ‘Hothaps’ programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies

            The ‘high occupational temperature health and productivity suppression’ programme (Hothaps) is a multi-centre health research and prevention programme aimed at quantifying the extent to which working people are affected by, or adapt to, heat exposure while working, and how global heating during climate change may increase such effects. The programme will produce essential new evidence for local, national and global assessment of negative impacts of climate change that have largely been overlooked. It will also identify and evaluate preventive interventions in different social and economic settings. Hothaps includes studies in any part of the world where hourly heat exposure exceeds physiological stress limits that may affect workers. This usually happens at temperatures above 25°C, depending on humidity, wind movement and heat radiation. Working people in low and middle-income tropical countries are particularly vulnerable, because many of them are involved in heavy physical work, either outdoors in strong sunlight or indoors without effective cooling. If high work intensity is maintained in workplaces with high heat exposure, serious health effects can occur, including heat stroke and death. Depending on the type of occupation, the required work intensity, and the level of heat stress, working people have to slow down their work in order to reduce internal body heat production and the risk of heat stroke. Thus, unless preventive interventions are used to reduce the heat stress on workers, their individual health and productivity will be affected and economic output per work hour will be reduced. Heat also influences other daily physical activities, unrelated to work, in all age groups. Poorer people without access to household or workplace cooling devices are most likely to be affected. The Hothaps programme includes a pilot study, heat monitoring of selected workplaces, qualitative studies of perceived heat impacts and preventative interventions, quantitative studies of impacts on health and productivity, and assessments of local impacts of climate change taking into account different applications of preventative interventions. Fundraising for the global programme is in progress and has enabled local field studies to start in 2009. Local funding support is also of great value and is being sought by several interested scientific partners. The Hothaps team welcomes independent use of the study protocols, but would be grateful for information about any planned, ongoing or completed studies of this type. Coordinated implementation of the protocols in multi-centre studies is also welcome. Eventually, the results of the Hothaps field studies will be used in global assessments of climate change-induced heat exposure increase in workplaces and its impacts on occupational health and productivity. These results will also be of value for the next assessment by the Intergovernmental Panel on Climate Change (IPCC) in 2013.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Adaptation to heat and cold.

                Bookmark

                Author and article information

                Journal
                Industrial Health
                Ind Health
                National Institute of Industrial Health
                0019-8366
                1880-8026
                2013
                2013
                : 51
                : 4
                : 424-431
                Article
                10.2486/indhealth.2013-0006
                23685851
                f67f4fbb-3db3-4edf-bd5f-56b216538d2d
                © 2013
                History

                Comments

                Comment on this article