22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In cancer research, background models for mutation rates have been extensively calibrated in coding regions, leading to the identification of many driver genes, recurrently mutated more than expected. Noncoding regions are also associated with disease; however, background models for them have not been investigated in as much detail. This is partially due to limited noncoding functional annotation. Also, great mutation heterogeneity and potential correlations between neighboring sites give rise to substantial overdispersion in mutation count, resulting in problematic background rate estimation. Here, we address these issues with a new computational framework called LARVA. It integrates variants with a comprehensive set of noncoding functional elements, modeling the mutation counts of the elements with a β-binomial distribution to handle overdispersion. LARVA, moreover, uses regional genomic features such as replication timing to better estimate local mutation rates and mutational hotspots. We demonstrate LARVA's effectiveness on 760 whole-genome tumor sequences, showing that it identifies well-known noncoding drivers, such as mutations in the TERT promoter. Furthermore, LARVA highlights several novel highly mutated regulatory sites that could potentially be noncoding drivers. We make LARVA available as a software tool and release our highly mutated annotations as an online resource ( larva.gersteinlab.org).

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene Ontology: tool for the unification of biology

            Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing.

              Human tumours typically harbour a remarkable number of somatic mutations. If presented on major histocompatibility complex class I molecules (MHCI), peptides containing these mutations could potentially be immunogenic as they should be recognized as 'non-self' neo-antigens by the adaptive immune system. Recent work has confirmed that mutant peptides can serve as T-cell epitopes. However, few mutant epitopes have been described because their discovery required the laborious screening of patient tumour-infiltrating lymphocytes for their ability to recognize antigen libraries constructed following tumour exome sequencing. We sought to simplify the discovery of immunogenic mutant peptides by characterizing their general properties. We developed an approach that combines whole-exome and transcriptome sequencing analysis with mass spectrometry to identify neo-epitopes in two widely used murine tumour models. Of the >1,300 amino acid changes identified, ∼13% were predicted to bind MHCI, a small fraction of which were confirmed by mass spectrometry. The peptides were then structurally modelled bound to MHCI. Mutations that were solvent-exposed and therefore accessible to T-cell antigen receptors were predicted to be immunogenic. Vaccination of mice confirmed the approach, with each predicted immunogenic peptide yielding therapeutically active T-cell responses. The predictions also enabled the generation of peptide-MHCI dextramers that could be used to monitor the kinetics and distribution of the anti-tumour T-cell response before and after vaccination. These findings indicate that a suitable prediction algorithm may provide an approach for the pharmacodynamic monitoring of T-cell responses as well as for the development of personalized vaccines in cancer patients.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                30 September 2015
                24 August 2015
                24 August 2015
                : 43
                : 17
                : 8123-8134
                Affiliations
                [1 ]Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
                [2 ]Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
                [3 ]Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065
                [4 ]Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
                [5 ]Department of Computer Science, Yale University, New Haven, CT 06520, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 203 432 6105; Fax: +1 360 838 7861; Email: mark.gerstein@ 123456yale.edu
                []The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Authors.
                Author information
                http://orcid.org/0000-0003-2655-8494
                Article
                10.1093/nar/gkv803
                4787796
                26304545
                f62845c0-384d-4ca6-9d65-46404e71f8e6
                © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 28 July 2015
                : 23 July 2015
                : 26 January 2015
                Page count
                Pages: 12
                Categories
                7
                24
                Computational Biology
                Custom metadata
                30 September 2015

                Genetics
                Genetics

                Comments

                Comment on this article