1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Encapsulation of stem-cell derived β-cells: A promising approach for the treatment for type 1 diabetes mellitus.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 diabetes mellitus is an auto-immune disease causing the T-cell mediated destruction of insulin-producing β-cells, resulting in chronic hyperglycemia. Current treatments such as insulin replacement therapy or the transplantation of pancreas or pancreatic islets present major disadvantages such as the constant need of drugs, as well as a shortage of donor organs. In this review, we discuss a sustainable solution to overcome these limitations combining the use of β-cells, derived from stem cells, and their encapsulation within a protective matrix. This article provides an exhaustive overview of currently investigated stem cell sources including embryonic, mesenchymal as well as induced pluripotent stem cells in combination with various up to date encapsulation methods allowing the formation of immuno-protective devices. In order to identify current limitations of this interdisciplinary therapeutic approach and to find sustainable solutions, it is essential to consider key aspects from all involved domains. This includes biological parameters such as the stem cell origin but also the different aspects of the encapsulation process, the used materials and their physico-chemical properties such as elasticity, porosity and permeability cut-off as well as the best implantation sites allowing efficient and self-autonomous control of glycemia by the transplanted encapsulated cells.

          Related collections

          Author and article information

          Journal
          J Colloid Interface Sci
          Journal of colloid and interface science
          Elsevier BV
          1095-7103
          0021-9797
          Apr 15 2023
          : 636
          Affiliations
          [1 ] Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Laboratory of Biochemistry and Cellular Biology (URBC), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
          [2 ] Laboratory of Biochemistry and Cellular Biology (URBC), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium. Electronic address: thierry.arnould@unamur.be.
          [3 ] Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium. Electronic address: bao-lian.su@unamur.be.
          Article
          S0021-9797(22)02271-8
          10.1016/j.jcis.2022.12.123
          36623370
          f5fd6e54-5e67-4789-9372-b8118d33cd94
          History

          Diabetes,Stem cell differentiation,Pancreatic β-cells,Immune-isolation,Encapsulation

          Comments

          Comment on this article