25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the “kynurenine shunt” which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD +). This review aims therefore at tracing a “map” of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          IDO expression by dendritic cells: tolerance and tryptophan catabolism.

          Indoleamine 2,3-dioxygenase (IDO) is an enzyme that degrades the essential amino acid tryptophan. The concept that cells expressing IDO can suppress T-cell responses and promote tolerance is a relatively new paradigm in immunology. Considerable evidence now supports this hypothesis, including studies of mammalian pregnancy, tumour resistance, chronic infections and autoimmune diseases. In this review, we summarize key recent developments and propose a unifying model for the role of IDO in tolerance induction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants.

            Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants.

              The aromatic amino acids phenylalanine, tyrosine, and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acids biosynthesis pathway, with chorismate serving as a major intermediate branch point metabolite. Yet, the regulation and coordination of synthesis of these amino acids are still far from being understood. Recent studies on these pathways identified a number of alternative cross-regulated biosynthesis routes with unique evolutionary origins. Although the major route of Phe and Tyr biosynthesis in plants occurs via the intermediate metabolite arogenate, recent studies suggest that plants can also synthesize phenylalanine via the intermediate metabolite phenylpyruvate (PPY), similarly to many microorganisms. Recent studies also identified a number of transcription factors regulating the expression of genes encoding enzymes of the shikimate and aromatic amino acids pathways as well as of multiple secondary metabolites derived from them in Arabidopsis and in other plant species.
                Bookmark

                Author and article information

                Journal
                J Amino Acids
                J Amino Acids
                JAA
                Journal of Amino Acids
                Hindawi Publishing Corporation
                2090-0104
                2090-0112
                2016
                12 January 2016
                : 2016
                : 8952520
                Affiliations
                1Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
                2Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
                3Interdepartmental Center of “Nutraceutical Research and Food for Health”, University of Pisa, 56124 Pisa, Italy
                Author notes

                Academic Editor: Arthur Conigrave

                Article
                10.1155/2016/8952520
                4737446
                26881063
                f5f06272-34f4-4f76-a723-71762276dc70
                Copyright © 2016 Lionella Palego et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 September 2015
                : 6 December 2015
                Categories
                Review Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article