32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CYR61/CCN1 and WISP3/CCN6 are chemoattractive ligands for human multipotent mesenchymal stroma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          CCN-proteins are known to be involved in development, homeostasis and repair of mesenchymal tissues. Since these processes implicate recruitment of cells with the potential to be committed to various phenotypes, we studied the effect of CYR61/CCN1 and WISP3/CCN6 on migration of human bone marrow derived mesenchymal stroma cells (MSCs) in comparison to in vitro osteogenic differentiated MSCs using a modified Boyden chamber assay.

          Results:

          CYR61 and WISP3 were purified as fusion proteins with a C-terminal Fc-tag from baculovirus infected SF21 cells using protein G sepharose columns. CYR61 and WISP3 stimulated cell migration of undifferentiated MSCs in a dose-dependent manner. CYR61 and WISP3 had similar effects on committed osteogenic precursor cells. Checkerboard analysis revealed that CYR61 and WISP3 stimulated true directed cell migration (chemotaxis) of MSCs and committed osteogenic precursors. In MSCs the chemotactic activity of WISP3 but not CYR61 was mediated through integrin ανß5.

          Conclusion:

          Our results indicate that CYR61 and WISP3 can function as soluble ligands transmitting chemotactic signals to human MSCs but differ in the involvement of integrin ανß5. This may be relevant for their possible role in connective tissue repair.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth.

          CYR61 is a secreted, cysteine-rich, heparin-binding protein encoded by a growth factor-inducible immediate-early gene. Acting as an extracellular, matrix-associated signaling molecule, CYR61 promotes the adhesion of endothelial cells through interaction with the integrin alphaVbeta3 and augments growth factor-induced DNA synthesis in the same cell type. In this study, we show that purified CYR61 stimulates directed migration of human microvascular endothelial cells in culture through an alphaV beta3-dependent pathway and induces neovascularization in rat corneas. Both the chemotactic and angiogenic activities of CYR61 can be blocked by specific anti-CYR61 antibodies. Whereas most human tumor-derived cell lines tested express CYR61, the gastric adenocarcinoma cell line RF-1 does not. Expression of the CYR61 cDNA under the regulation of a constitutive promoter in RF-1 cells significantly enhances the tumorigenicity of these cells as measured by growth in immunodeficient mice, resulting in tumors that are larger and more vascularized than those produced by control RF-1 cells. Taken together, these results identify CYR61 as an angiogenic inducer that can promote tumor growth and vascularization; the results also suggest potential roles for CYR61 in physiologic and pathologic neovascularization.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The CCN family of angiogenic regulators: the integrin connection.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.

              Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central
                1471-2121
                2007
                31 October 2007
                : 8
                : 45
                Affiliations
                [1 ]Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
                [2 ]Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
                [3 ]Orthopedic Department, University of Ulm, Ulm, Germany
                Article
                1471-2121-8-45
                10.1186/1471-2121-8-45
                2211300
                17973995
                f5dc3d8c-28d2-4dfd-bb87-8d297a3ed65b
                Copyright © 2007 Schütze et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 February 2007
                : 31 October 2007
                Categories
                Research Article

                Cell biology
                Cell biology

                Comments

                Comment on this article