23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Orally Administered Salacia reticulata Extract Reduces H1N1 Influenza Clinical Symptoms in Murine Lung Tissues Putatively Due to Enhanced Natural Killer Cell Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza is a major cause of respiratory tract infection. Although most cases do not require further hospitalization, influenza periodically causes epidemics in humans that can potentially infect and kill millions of people. To countermeasure this threat, new vaccines need to be developed annually to match emerging influenza viral strains with increased resistance to existing vaccines. Thus, there is a need for finding and developing new anti-influenza viral agents as alternatives to current treatments. Here, we tested the antiviral effects of an extract from the stems and roots of Salacia reticulata (SSRE), a plant rich in phytochemicals, such as salacinol, kotalanol, and catechins, on H1N1 influenza virus-infected mice. Following oral administration of 0.6 mg/day of SSRE, the incidence of coughing decreased in 80% of mice, and only one case of severe pulmonary inflammation was detected. Moreover, when compared with mice given Lactobacillus casei JCM1134, a strain previously shown to help increase in vitro natural killer (NK) cell activity, SSRE-administered mice showed greater and equal NK cell activity in splenocytes and pulmonary cells, respectively, at high effector cell:target cell ratios. Next, to test whether or not SSRE would exert protective effects against influenza in the absence of gut microbiota, mice were given antibiotics before being inoculated influenza virus and subsequently administered SSRE. SSRE administration induced an increase in NK cell activity in splenocytes and pulmonary cells at levels similar to those detected in mice not treated with antibiotics. Based on our results, it can be concluded that phytochemicals in the SSRE exerted protective effects against influenza infection putatively via modulation of the immune response, including enhancement of NK cell activity, although some protective effects were not necessarily through modulation of gut microbiota. Further investigation is necessary to elucidate the molecular mechanisms underlying the protective effects of SSRE against influenza infection.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors.

          In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiviral effect of catechins in green tea on influenza virus.

            Polyphenolic compound catechins ((-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin (EGC)) from green tea were evaluated for their ability to inhibit influenza virus replication in cell culture and for potentially direct virucidal effect. Among the test compounds, the EGCG and ECG were found to be potent inhibitors of influenza virus replication in MDCK cell culture and this effect was observed in all influenza virus subtypes tested, including A/H1N1, A/H3N2 and B virus. The 50% effective inhibition concentration (EC50) of EGCG, ECG, and EGC for influenza A virus were 22-28, 22-40 and 309-318 microM, respectively. EGCG and ECG exhibited hemagglutination inhibition activity, EGCG being more effective. However, the sensitivity in hemagglutination inhibition was widely different among three different subtypes of influenza viruses tested. Quantitative RT-PCR analysis revealed that, at high concentration, EGCG and ECG also suppressed viral RNA synthesis in MDCK cells whereas EGC failed to show similar effect. Similarly, EGCG and ECG inhibited the neuraminidase activity more effectively than the EGC. The results show that the 3-galloyl group of catechin skeleton plays an important role on the observed antiviral activity, whereas the 5'-OH at the trihydroxy benzyl moiety at 2-position plays a minor role. The results, along with the HA type-specific effect, suggest that the antiviral effect of catechins on influenza virus is mediated not only by specific interaction with HA, but altering the physical properties of viral membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease.

              Antibiotic-associated diarrhea (AAD) is a common complication of most antibiotics and Clostridium difficile disease (CDD), which also is incited by antibiotics, is a leading cause of nosocomial outbreaks of diarrhea and colitis. The use of probiotics for these two related diseases remains controversial. To compare the efficacy of probiotics for the prevention of AAD and the treatment of CDD based on the published randomized, controlled clinical trials. PubMed, Medline, Google Scholar, NIH registry of clinical trials, metaRegister, and Cochrane Central Register of Controlled Trials were searched from 1977 to 2005, unrestricted by language. Secondary searches of reference lists, authors, reviews, commentaries, associated diseases, books, and meeting abstracts. Trials were included in which specific probiotics given to either prevent or treat the diseases of interest. Trials were required to be randomized, controlled, blinded efficacy trials in humans published in peer-reviewed journals. Trials that were excluded were pre-clinical, safety, Phase 1 studies in volunteers, reviews, duplicate reports, trials of unspecified probiotics, trials of prebiotics, not the disease being studied, or inconsistent outcome measures. Thirty-one of 180 screened studies (totally 3,164 subjects) met the inclusion and exclusion criteria. One reviewer identified studies and abstracted data on sample size, population characteristics, treatments, and outcomes. From 25 randomized controlled trials (RCTs), probiotics significantly reduced the relative risk of AAD (RR = 0.43, 95% CI 0.31, 0.58, p < 0.001). From six randomized trials, probiotics had significant efficacy for CDD (RR = 0.59, 95% CI 0.41, 0.85, p = 0.005). A variety of different types of probiotics show promise as effective therapies for these two diseases. Using meta-analyses, three types of probiotics (Saccharomyces boulardii, Lactobacillus rhamnosus GG, and probiotic mixtures) significantly reduced the development of antibiotic-associated diarrhea. Only S. boulardii was effective for CDD.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/298736
                URI : http://frontiersin.org/people/u/301001
                URI : http://frontiersin.org/people/u/251682
                URI : http://frontiersin.org/people/u/244701
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                31 March 2016
                2016
                : 7
                : 115
                Affiliations
                [1] 1Kyoto Institute of Nutrition and Pathology , Kyoto, Japan
                [2] 2Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University , Kyoto, Japan
                [3] 3Life Science Research Laboratories, Research and Development Management Headquarters, Fujifilm Corporation , Kanagawa, Japan
                [4] 4Laboratory of Animal Hygiene, Department of Agricultural and Life Sciences, Kyoto Prefectural University , Kyoto, Japan
                Author notes

                Edited by: Laurel L. Lenz, University of Colorado School of Medicine, USA

                Reviewed by: Diego A. Vargas-Inchaustegui, National Cancer Institute, USA; Vijayakumar Velu, Emory University, USA

                *Correspondence: Ryo Inoue, r-inoue@ 123456kpu.ac.jp

                Specialty section: This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00115
                4814808
                27066007
                f5a2cd5d-173c-4883-8034-3c39b8a2ffb4
                Copyright © 2016 Romero-Pérez, Egashira, Harada, Tsuruta, Oda, Ueda, Tsukahara, Tsukamoto and Inoue.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 December 2015
                : 14 March 2016
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 64, Pages: 9, Words: 7029
                Categories
                Immunology
                Original Research

                Immunology
                salacia reticulata extract,h1n1 influenza virus,lactobacillus casei jcm1134,antibiotics,gut microbiota,natural killer cells,splenocytes,pulmonary cells

                Comments

                Comment on this article