47
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit your manuscript, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Initiatives, Concepts, and Implementation Practices of FAIR (Findable, Accessible, Interoperable, and Reusable) Data Principles in Health Data Stewardship Practice: Protocol for a Scoping Review

      research-article
      , MSc 1 , , , MLS 2 , , PhD 1 , , PhD 1
      (Reviewer), (Reviewer)
      JMIR Research Protocols
      JMIR Publications
      data stewardship, FAIR data principles, health research, PRISMA, scoping review

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Data stewardship is an essential driver of research and clinical practice. Data collection, storage, access, sharing, and analytics are dependent on the proper and consistent use of data management principles among the investigators. Since 2016, the FAIR (findable, accessible, interoperable, and reusable) guiding principles for research data management have been resonating in scientific communities. Enabling data to be findable, accessible, interoperable, and reusable is currently believed to strengthen data sharing, reduce duplicated efforts, and move toward harmonization of data from heterogeneous unconnected data silos. FAIR initiatives and implementation trends are rising in different facets of scientific domains. It is important to understand the concepts and implementation practices of the FAIR data principles as applied to human health data by studying the flourishing initiatives and implementation lessons relevant to improved health research, particularly for data sharing during the coronavirus pandemic.

          Objective

          This paper aims to conduct a scoping review to identify concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in the health data domain.

          Methods

          The Arksey and O’Malley stage-based methodological framework for scoping reviews will be used for this review. PubMed, Web of Science, and Google Scholar will be searched to access relevant primary and grey publications. Articles written in English and published from 2014 onwards with FAIR principle concepts or practices in the health domain will be included. Duplication among the 3 data sources will be removed using a reference management software. The articles will then be exported to a systematic review management software. At least two independent authors will review the eligibility of each article based on defined inclusion and exclusion criteria. A pretested charting tool will be used to extract relevant information from the full-text papers. Qualitative thematic synthesis analysis methods will be employed by coding and developing themes. Themes will be derived from the research questions and contents in the included papers.

          Results

          The results will be reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews) reporting guidelines. We anticipate finalizing the manuscript for this work in 2021.

          Conclusions

          We believe comprehensive information about the FAIR data principles, initiatives, implementation practices, and lessons learned in the FAIRification process in the health domain is paramount to supporting both evidence-based clinical practice and research transparency in the era of big data and open research publishing.

          International Registered Report Identifier (IRRID)

          PRR1-10.2196/22505

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation

          Scoping reviews, a type of knowledge synthesis, follow a systematic approach to map evidence on a topic and identify main concepts, theories, sources, and knowledge gaps. Although more scoping reviews are being done, their methodological and reporting quality need improvement. This document presents the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) checklist and explanation. The checklist was developed by a 24-member expert panel and 2 research leads following published guidance from the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network. The final checklist contains 20 essential reporting items and 2 optional items. The authors provide a rationale and an example of good reporting for each item. The intent of the PRISMA-ScR is to help readers (including researchers, publishers, commissioners, policymakers, health care providers, guideline developers, and patients or consumers) develop a greater understanding of relevant terminology, core concepts, and key items to report for scoping reviews.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Scoping studies: towards a methodological framework

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rayyan—a web and mobile app for systematic reviews

              Background Synthesis of multiple randomized controlled trials (RCTs) in a systematic review can summarize the effects of individual outcomes and provide numerical answers about the effectiveness of interventions. Filtering of searches is time consuming, and no single method fulfills the principal requirements of speed with accuracy. Automation of systematic reviews is driven by a necessity to expedite the availability of current best evidence for policy and clinical decision-making. We developed Rayyan (http://rayyan.qcri.org), a free web and mobile app, that helps expedite the initial screening of abstracts and titles using a process of semi-automation while incorporating a high level of usability. For the beta testing phase, we used two published Cochrane reviews in which included studies had been selected manually. Their searches, with 1030 records and 273 records, were uploaded to Rayyan. Different features of Rayyan were tested using these two reviews. We also conducted a survey of Rayyan’s users and collected feedback through a built-in feature. Results Pilot testing of Rayyan focused on usability, accuracy against manual methods, and the added value of the prediction feature. The “taster” review (273 records) allowed a quick overview of Rayyan for early comments on usability. The second review (1030 records) required several iterations to identify the previously identified 11 trials. The “suggestions” and “hints,” based on the “prediction model,” appeared as testing progressed beyond five included studies. Post rollout user experiences and a reflexive response by the developers enabled real-time modifications and improvements. The survey respondents reported 40% average time savings when using Rayyan compared to others tools, with 34% of the respondents reporting more than 50% time savings. In addition, around 75% of the respondents mentioned that screening and labeling studies as well as collaborating on reviews to be the two most important features of Rayyan. As of November 2016, Rayyan users exceed 2000 from over 60 countries conducting hundreds of reviews totaling more than 1.6M citations. Feedback from users, obtained mostly through the app web site and a recent survey, has highlighted the ease in exploration of searches, the time saved, and simplicity in sharing and comparing include-exclude decisions. The strongest features of the app, identified and reported in user feedback, were its ability to help in screening and collaboration as well as the time savings it affords to users. Conclusions Rayyan is responsive and intuitive in use with significant potential to lighten the load of reviewers.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Res Protoc
                JMIR Res Protoc
                ResProt
                JMIR Research Protocols
                JMIR Publications (Toronto, Canada )
                1929-0748
                February 2021
                2 February 2021
                : 10
                : 2
                : e22505
                Affiliations
                [1 ] Medical Informatics Institute for Community Medicine University Medicine Greifswald Greifswald Germany
                [2 ] International Health Department Johns Hopkins Bloomberg School of Public Health Baltimore, MD United States
                Author notes
                Corresponding Author: Esther Thea Inau inaue@ 123456uni-greifswald.de
                Author information
                https://orcid.org/0000-0002-8950-2239
                https://orcid.org/0000-0001-9279-2073
                https://orcid.org/0000-0002-5886-5563
                https://orcid.org/0000-0001-7838-9050
                Article
                v10i2e22505
                10.2196/22505
                7886612
                33528373
                f57c6a8d-6207-4e54-ab70-d775a321b3cd
                ©Esther Thea Inau, Jean Sack, Dagmar Waltemath, Atinkut Alamirrew Zeleke. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 02.02.2021.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.

                History
                : 11 September 2020
                : 10 October 2020
                : 2 December 2020
                : 8 December 2020
                Categories
                Protocol
                Protocol

                data stewardship,fair data principles,health research,prisma,scoping review

                Comments

                Comment on this article