20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      BH3 mimetic obatoclax enhances TRAIL-mediated apoptosis in human pancreatic cancer cells.

      Clinical cancer research : an official journal of the American Association for Cancer Research
      Apoptosis, drug effects, BH3 Interacting Domain Death Agonist Protein, pharmacology, Caspases, biosynthesis, Cell Line, Tumor, Cytochromes c, metabolism, Humans, Myeloid Cell Leukemia Sequence 1 Protein, Pancreatic Neoplasms, Proto-Oncogene Proteins c-bcl-2, Pyrroles, TNF-Related Apoptosis-Inducing Ligand, bcl-2 Homologous Antagonist-Killer Protein, bcl-2-Associated X Protein

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prosurvival Bcl-2 proteins inhibit the mitochondrial and death receptor-mediated apoptotic pathways. Obatoclax is a small-molecule antagonist of the BH3-binding groove of Bcl-2 proteins that may enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity and efficacy. Human pancreatic cancer cell lines were incubated with obatoclax and/or TRAIL and cell viability, Annexin V labeling, caspase cleavage, and cytochrome c release were measured. In drug-treated cell lines, protein-protein interactions were studied by immunoprecipitation. Bax/Bak activation was analyzed using conformation-specific antibodies. Lentiviral short hairpin RNA was used to knockdown Bim, Bid, and apoptosis-inducing factor (AIF) expression. Obatoclax reduced the viability of PANC-1 and BxPC-3 cell lines and synergistically enhanced TRAIL-mediated cytotoxicity. Obatoclax enhanced TRAIL-mediated apoptosis, as shown by Annexin V labeling, which was accompanied by caspase activation (caspase-8, -9, and -3) and cleavage of Bid. Obatoclax potentiated TRAIL-mediated Bax/Bak activation and the release of mitochondrial cytochrome c, Smac, and AIF. Mechanisms underlying the apoptotic effect of obatoclax include displacement of Bak from its sequestration by Bcl-x(L) or Mcl-1 and release of Bim from Bcl-2 or Mcl-1. Bid knockdown by short hairpin RNA attenuated caspase cleavage and cytotoxicity of obatoclax plus TRAIL. Bim knockdown failed to inhibit the cytotoxic effect of obatoclax alone or combined with TRAIL yet attenuated TRAIL-mediated cytotoxicity. AIF knockdown attenuated cytotoxicity of the drug combination. Obatoclax potentiates TRAIL-mediated apoptosis by unsequestering Bak and Bim from Bcl-2/Bcl-x(L) or Mcl-1 proteins. This drug combination enhances Bid-mediated cross-talk between the mitochondrial and death receptor-mediated apoptotic pathways and may represent a novel therapeutic strategy against pancreatic cancer.

          Related collections

          Author and article information

          Comments

          Comment on this article