19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance is a major global public health problem, which develops when pathogens acquire antimicrobial resistance genes (ARGs), primarily through genetic recombination between commensal and pathogenic microbes. The resistome is a collection of all ARGs. In microorganisms, the primary method of ARG acquisition is horizontal gene transfer (HGT). Thus, understanding and identifying HGTs, can provide insight into the mechanisms of antimicrobial resistance transmission and dissemination. The use of high-throughput sequencing technologies has made the analysis of ARG sequences feasible and accessible. In particular, the metagenomic approach has facilitated the identification of community-based antimicrobial resistance. This approach is useful, as it allows access to the genomic data in an environmental sample without the need to isolate and culture microorganisms prior to analysis. Here, we aimed to reflect on the challenges of analyzing metagenomic data in the three main approaches for studying antimicrobial resistance: (i) analysis of microbial diversity, (ii) functional gene analysis, and (iii) searching the most complete and pertinent resistome databases.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: not found
          • Article: not found

          QIIME allows analysis of high-throughput community sequencing data.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Search and clustering orders of magnitude faster than BLAST.

            Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast and sensitive protein alignment using DIAMOND.

              The alignment of sequencing reads against a protein reference database is a major computational bottleneck in metagenomics and data-intensive evolutionary projects. Although recent tools offer improved performance over the gold standard BLASTX, they exhibit only a modest speedup or low sensitivity. We introduce DIAMOND, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                18 January 2021
                2020
                : 11
                : 575592
                Affiliations
                [1] 1Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará , Belém, Brazil
                [2] 2Central de Genômica e Bioinformática (CeGenBio), Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará , Fortaleza, Brazil
                Author notes

                Edited by: Debmalya Barh, Institute of Integrative Omics and Applied Biotechnology (IIOAB), India

                Reviewed by: João Marcelo Pereira Alves, University of São Paulo, Brazil; Ranjith Kumavath, Central University of Kerala, India

                *Correspondence: Vinicius A. C. de Abreu, vabreu@ 123456ufpa.br

                This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2020.575592
                7848172
                33537056
                f570cba3-a839-4da4-92ed-0a6303a622a3
                Copyright © 2021 de Abreu, Perdigão and Almeida.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 June 2020
                : 04 December 2020
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 109, Pages: 9, Words: 0
                Categories
                Genetics
                Mini Review

                Genetics
                antimicrobial resistance genes,horizontal gene transfer,metagenomic analysis,resistome,shotgun metagenome sequencing,database

                Comments

                Comment on this article