3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      1-Phenylcyclohexan-1-amine hydrochloride (PCA HCl) alters mesolimbic dopamine system accompanied by neuroplastic changes: A neuropsychopharmacological evaluation in rodents

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy.

          Drug self-administration studies have recently employed progressive ratio (PR) schedules to examine psychostimulant and opiate reinforcement. This review addresses the technical, statistical, and theoretical issues related to the use of the PR schedule in self-administration studies in rats. Session parameters adopted for use in our laboratory and the considerations relevant to them are described. The strengths and weaknesses of the PR schedule are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Is there a common molecular pathway for addiction?

            Drugs of abuse have very different acute mechanisms of action but converge on the brain's reward pathways by producing a series of common functional effects after both acute and chronic administration. Some similar actions occur for natural rewards as well. Researchers are making progress in understanding the molecular and cellular basis of these common effects. A major goal for future research is to determine whether such common underpinnings of addiction can be exploited for the development of more effective treatments for a wide range of addictive disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Brain on Drugs: From Reward to Addiction.

              Advances in neuroscience identified addiction as a chronic brain disease with strong genetic, neurodevelopmental, and sociocultural components. We here discuss the circuit- and cell-level mechanisms of this condition and its co-option of pathways regulating reward, self-control, and affect. Drugs of abuse exert their initial reinforcing effects by triggering supraphysiologic surges of dopamine in the nucleus accumbens that activate the direct striatal pathway via D1 receptors and inhibit the indirect striato-cortical pathway via D2 receptors. Repeated drug administration triggers neuroplastic changes in glutamatergic inputs to the striatum and midbrain dopamine neurons, enhancing the brain's reactivity to drug cues, reducing the sensitivity to non-drug rewards, weakening self-regulation, and increasing the sensitivity to stressful stimuli and dysphoria. Drug-induced impairments are long lasting; thus, interventions designed to mitigate or even reverse them would be beneficial for the treatment of addiction.
                Bookmark

                Author and article information

                Journal
                Neurochemistry International
                Neurochemistry International
                Elsevier BV
                01970186
                March 2021
                March 2021
                : 144
                : 104962
                Article
                10.1016/j.neuint.2021.104962
                33460722
                f5701d13-8a03-4f7d-a0ef-b97474aa5090
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article