5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.

          Related collections

          Most cited references214

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background Rehabilitation has often been seen as a disability-specific service needed by only few of the population. Despite its individual and societal benefits, rehabilitation has not been prioritised in countries and is under-resourced. We present global, regional, and country data for the number of people who would benefit from rehabilitation at least once during the course of their disabling illness or injury. Methods To estimate the need for rehabilitation, data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 were used to calculate the prevalence and years of life lived with disability (YLDs) of 25 diseases, impairments, or bespoke aggregations of sequelae that were selected as amenable to rehabilitation. All analyses were done at the country level and then aggregated to seven regions: World Bank high-income countries and the six WHO regions (ie, Africa, the Americas, Southeast Asia, Europe, Eastern Mediterranean, and Western Pacific). Findings Globally, in 2019, 2·41 billion (95% uncertainty interval 2·34–2·50) individuals had conditions that would benefit from rehabilitation, contributing to 310 million [235–392] YLDs. This number had increased by 63% from 1990 to 2019. Regionally, the Western Pacific had the highest need of rehabilitation services (610 million people [588–636] and 83 million YLDs [62–106]). The disease area that contributed most to prevalence was musculoskeletal disorders (1·71 billion people [1·68–1·80]), with low back pain being the most prevalent condition in 134 of the 204 countries analysed. Interpretation To our knowledge, this is the first study to produce a global estimate of the need for rehabilitation services and to show that at least one in every three people in the world needs rehabilitation at some point in the course of their illness or injury. This number counters the common view of rehabilitation as a service required by only few people. We argue that rehabilitation needs to be brought close to communities as an integral part of primary health care to reach more people in need. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The story of Bioglass.

            Historically the function of biomaterials has been to replace diseased or damaged tissues. First generation biomaterials were selected to be as bio-inert as possible and thereby minimize formation of scar tissue at the interface with host tissues. Bioactive glasses were discovered in 1969 and provided for the first time an alternative; second generation, interfacial bonding of an implant with host tissues. Tissue regeneration and repair using the gene activation properties of Bioglass provide a third generation of biomaterials. This article reviews the 40 year history of the development of bioactive glasses, with emphasis on the first composition, 45S5 Bioglass, that has been in clinical use since 1985. The steps of discovery, characterization, in vivo and in vitro evaluation, clinical studies and product development are summarized along with the technology transfer processes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Materials design for bone-tissue engineering

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MATEG9
                Materials
                Materials
                MDPI AG
                1996-1944
                November 2022
                October 25 2022
                : 15
                : 21
                : 7477
                Article
                10.3390/ma15217477
                36363085
                f561ec77-683d-4222-9153-dc4d6d0c49a3
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article