26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Limitations of human tau-expressing mouse models and novel approaches of mouse modeling for tauopathy

      review-article
      * , ,
      Frontiers in Neuroscience
      Frontiers Media S.A.
      tau, tauopathy, FTDP-17 tau mutations, mouse model, neurofibrilary tangles

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases, collectively termed tauopathy. There is no disease-modifying drug available for tauopathy except anti-amyloid antibody therapies for Alzheimer’s disease. For tau-targeting therapy, experimental models recapitulating human tau pathologies are indispensable. However, there are limited numbers of animal models that display intracellular filamentous tau aggregations. At present, several lines of P301L/S mutant tau-expressing transgenic mice successfully developed neurofibrillary pathology in the central nervous system, while most non-mutant tau-expressing transgenic mice rarely developed tau pathology. Importantly, recent studies have revealed that transgenes disrupt the coding sequence of endogenous genes, resulting in deletions and/or structural variations at the insertion site. Although any impact on the pathogenesis of tauopathy is unknown, gene disruptions may affect age-related neurodegeneration including tangle formation and brain atrophy. Moreover, some mouse lines show strain-dependent pathological features. These limitations (FTDP-17 mutations, insertion/deletion mutations, and genetic background) are a major hindrance to the establishment of a precise disease model of tauopathy. In this review, we noticed both the utility and the pitfalls of current P301L/S mutant tau-expressing transgenic mice, and we propose future strategies of mouse modeling to replicate human tauopathies.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model.

          Filamentous tau inclusions are hallmarks of Alzheimer's disease (AD) and related tauopathies, but earlier pathologies may herald disease onset. To investigate this, we studied wild-type and P301S mutant human tau transgenic (Tg) mice. Filamentous tau lesions developed in P301S Tg mice at 6 months of age, and progressively accumulated in association with striking neuron loss as well as hippocampal and entorhinal cortical atrophy by 9-12 months of age. Remarkably, hippocampal synapse loss and impaired synaptic function were detected in 3 month old P301S Tg mice before fibrillary tau tangles emerged. Prominent microglial activation also preceded tangle formation. Importantly, immunosuppression of young P301S Tg mice with FK506 attenuated tau pathology and increased lifespan, thereby linking neuroinflammation to early progression of tauopathies. Thus, hippocampal synaptic pathology and microgliosis may be the earliest manifestations of neurodegenerative tauopathies, and abrogation of tau-induced microglial activation could retard progression of these disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurodegenerative tauopathies.

            The defining neuropathological characteristics of Alzheimer's disease are abundant filamentous tau lesions and deposits of fibrillar amyloid beta peptides. Prominent filamentous tau inclusions and brain degeneration in the absence of beta-amyloid deposits are also hallmarks of neurodegenerative tauopathies exemplified by sporadic corticobasal degeneration, progressive supranuclear palsy, and Pick's disease, as well as by hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Because multiple tau gene mutations are pathogenic for FTDP-17 and tau polymorphisms appear to be genetic risk factors for sporadic progressive supranuclear palsy and corticobasal degeneration, tau abnormalities are linked directly to the etiology and pathogenesis of neurodegenerative disease. Indeed, emerging data support the hypothesis that different tau gene mutations are pathogenic because they impair tau functions, promote tau fibrillization, or perturb tau gene splicing, thereby leading to formation of biochemically and structurally distinct aggregates of tau. Nonetheless, different members of the same kindred often exhibit diverse FTDP-17 syndromes, which suggests that additional genetic or epigenetic factors influence the phenotypic manifestations of neurodegenerative tauopathies. Although these and other hypothetical mechanisms of neurodegenerative tauopathies remain to be tested and validated, transgenic models are increasingly available for this purpose, and they will accelerate discovery of more effective therapies for neurodegenerative tauopathies and related disorders, including Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of memory formation through regulated expression of a CaMKII transgene.

              One of the major limitations in the use of genetically modified mice for studying cognitive functions is the lack of regional and temporal control of gene function. To overcome these limitations, a forebrain-specific promoter was combined with the tetracycline transactivator system to achieve both regional and temporal control of transgene expression. Expression of an activated calcium-independent form of calcium-calmodulin-dependent kinase II (CaMKII) resulted in a loss of hippocampal long-term potentiation in response to 10-hertz stimulation and a deficit in spatial memory, a form of explicit memory. Suppression of transgene expression reversed both the physiological and the memory deficit. When the transgene was expressed at high levels in the lateral amygdala and the striatum but not other forebrain structures, there was a deficit in fear conditioning, an implicit memory task, that also was reversible. Thus, the CaMKII signaling pathway is critical for both explicit and implicit memory storage, in a manner that is independent of its potential role in development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                20 April 2023
                2023
                : 17
                : 1149761
                Affiliations
                Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology , Chiba, Japan
                Author notes

                Edited by: Einar M. Sigurdsson, New York University, United States

                Reviewed by: Efthimios M. C. Skoulakis, Alexander Fleming Biomedical Sciences Research Center, Greece; Taisuke Tomita, The University of Tokyo, Japan; Miyabishara Yokoyama, The University of Tokyo, Japan in collaboration with reviewer TT

                *Correspondence: Naruhiko Sahara, sahara.naruhiko@ 123456qst.go.jp

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2023.1149761
                10157230
                37152607
                f5515034-c267-4d90-8e01-b1e46ed3d5a0
                Copyright © 2023 Sahara and Yanai.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 January 2023
                : 24 March 2023
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 78, Pages: 11, Words: 8021
                Categories
                Neuroscience
                Review

                Neurosciences
                tau,tauopathy,ftdp-17 tau mutations,mouse model,neurofibrilary tangles
                Neurosciences
                tau, tauopathy, ftdp-17 tau mutations, mouse model, neurofibrilary tangles

                Comments

                Comment on this article