9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blind cavefish evolved food-searching behavior without changing sensory modality compared with sighted conspecies in the dark

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In nature, animals must navigate to forage according to their sensory inputs. Different species use different sensory modalities to locate food efficiently. For teleosts, food emits visual, mechanical, chemical, and/or possibly weak-electrical signals, which can be detected by optic, auditory/lateral line, and olfactory/taste buds sensory systems. However, how fish respond to and use different sensory inputs when locating food, as well as the evolution of these sensory modalities, remain unclear. We examined the Mexican tetra, Astyanax mexicanus, which is composed of two different morphs: a sighted riverine (surface fish) and a blind cave morph (cavefish). Compared with surface fish, cavefish have enhanced non-visual sensory systems, including the mechanosensory lateral line system, chemical sensors comprising the olfactory system and taste buds, and the auditory system to help navigate toward food sources. We tested how visual, chemical, and mechanical stimuli evoke food-seeking behavior. In contrast to our expectations, both surface fish and cavefish did not follow a gradient of chemical stimulus (food extract) but used it as a cue for the ambient existence of food. Surface fish followed visual cues (red plastic beads and food pellets), but, in the dark, were likely to rely on mechanosensors—the lateral line and/or tactile sensor—as cavefish did. Our results indicate cavefish used similar sensory modality to surface fish in the dark, while adherence levels to stimuli were higher in cavefish. In addition, cavefish evolved an extended circling strategy to capture food, which may yield a higher chance to capture food by swimming-by the food multiple times instead of once through zigzag motion. In summary, we propose ancestors of cavefish similar to surface fish may have needed little modification in food-seeking strategy to adapt to the dark.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness.

          How cave animals adapt to life in darkness is a poorly understood aspect of evolutionary biology [1]. Here we identify a behavioral shift and its morphological basis in Astyanax mexicanus, a teleost with a sighted surface-dwelling form (surface fish) and various blind cave-dwelling forms (cavefish) [2-4]. Vibration attraction behavior (VAB) is the ability of fish to swim toward the source of a water disturbance in darkness. VAB was typically seen in cavefish, rarely in surface fish, and was advantageous for feeding success in the dark. The potential for showing VAB has a genetic component and is linked to the mechanosensory function of the lateral line. VAB was evoked by vibration stimuli peaking at 35 Hz, blocked by lateral line inhibitors, first detected after developmental increases in superficial neuromast (SN) number and size [5-7], and significantly reduced by bilateral ablation of SN. We conclude that VAB and SN enhancement coevolved to compensate for loss of vision and to help blind cavefish find food in darkness. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

            This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Odours from marine plastic debris induce food search behaviours in a forage fish

              Plastic pollution is an anthropogenic stressor in marine ecosystems globally. Many species of marine fish (more than 50) ingest plastic debris. Ingested plastic has a variety of lethal and sublethal impacts and can be a route for bioaccumulation of toxic compounds throughout the food web. Despite its pervasiveness and severity, our mechanistic understanding of this maladaptive foraging behaviour is incomplete. Recent evidence suggests that the chemical signature of plastic debris may explain why certain species are predisposed to mistaking plastic for food. Anchovy ( Engraulis sp.) are abundant forage fish in coastal upwelling systems and a critical prey resource for top predators. Anchovy ingest plastic in natural conditions, though the mechanism they use to misidentify plastic as prey is unknown. Here, we presented wild-caught schools of northern anchovy ( Engraulis mordax ) with odour solutions made of plastic debris and clean plastic to compare school-wide aggregation and rheotactic responses relative to food and food odour presentations. Anchovy schools responded to plastic debris odour with increased aggregation and reduced rheotaxis. These results were similar to the effects food and food odour presentations had on schools. Conversely, these behavioural responses were absent in clean plastic and control treatments. To our knowledge, this is the first experimental evidence that adult anchovy use odours to forage. We conclude that the chemical signature plastic debris acquires in the photic zone can induce foraging behaviours in anchovy schools. These findings provide further support for a chemosensory mechanism underlying plastic consumption by marine wildlife. Given the trophic position of forage fish, these findings have considerable implications for aquatic food webs and possibly human health.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                13 June 2023
                : 2023.06.12.544672
                Affiliations
                [1 ]School of Life Sciences, the University of Hawai’i at Mānoa, Honolulu, Hawai’i, USA
                [2 ]Institut de Biologie Valrose, Université Côte d’Azur, Nice, France
                [3 ]Department of Math, the University of Hawai’i at Mānoa, Honolulu, Hawai’i, USA
                Author notes

                Author contributions

                KK: designed the experiments, performed the experiment and analyses, wrote the initial draft, and edited the manuscript.

                VFLF: designed the experiments, performed and assisted the experiment, and edited the manuscript.

                DT: designed the experiment, consulted the experiment, and edited the manuscript.

                MY: designed the experiments, performed the experiment and analyses, wrote the initial draft with KK, and edited the manuscript

                [* ]Corresponding author: Address: 3190 Maile way, St John 101, Honolulu, Hawaii 96822, USA, Tel: +1-808-956-6682, Fax: +1-808-956-4745, yoshizaw@ 123456hawaii.edu
                Article
                10.1101/2023.06.12.544672
                10312625
                37398421
                f54da96d-3122-49e1-8261-67b12ef44664

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                Comments

                Comment on this article