148
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonreciprocal light transmission in parity-time-symmetric whispering-gallery microcavities

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optical systems combining balanced loss and gain profiles provide a unique platform to implement classical analogues of quantum systems described by non-Hermitian parity-time- (PT-) symmetric Hamiltonians and to originate new synthetic materials with novel properties. To date, experimental works on PT-symmetric optical systems have been limited to waveguides in which resonances do not play a role. Here we report the first demonstration of PT-symmetry breaking in optical resonator systems by using two directly coupled on-chip optical whispering-gallery-mode (WGM) microtoroid silica resonators. Gain in one of the resonators is provided by optically pumping Erbium (Er3+) ions embedded in the silica matrix; the other resonator exhibits passive loss. The coupling strength between the resonators is adjusted by using nanopositioning stages to tune their distance. We have observed reciprocal behavior of the PT-symmetric system in the linear regime, as well as a transition to nonreciprocity in the PT symmetry-breaking phase transition due to the significant enhancement of nonlinearity in the broken-symmetry phase. Our results represent a significant advance towards a new generation of synthetic optical systems enabling on-chip manipulation and control of light propagation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry

          The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of \({\cal PT}\) symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These \({\cal PT}\) symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This paper describes the unusual classical and quantum properties of these theories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies.

            Invisibility by metamaterials is of great interest, where optical properties are manipulated in the real permittivity-permeability plane. However, the most effective approach to achieving invisibility in various military applications is to absorb the electromagnetic waves emitted from radar to minimize the corresponding reflection and scattering, such that no signal gets bounced back. Here, we show the experimental realization of chip-scale unidirectional reflectionless optical metamaterials near the spontaneous parity-time symmetry phase transition point where reflection from one side is significantly suppressed. This is enabled by engineering the corresponding optical properties of the designed parity-time metamaterial in the complex dielectric permittivity plane. Numerical simulations and experimental verification consistently exhibit asymmetric reflection with high contrast ratios around a wavelength of of 1,550 nm. The demonstrated unidirectional phenomenon at the corresponding parity-time exceptional point on-a-chip confirms the feasibility of creating complicated on-chip parity-time metamaterials and optical devices based on their properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Making Sense of Non-Hermitian Hamiltonians

              The Hamiltonian H specifies the energy levels and time evolution of a quantum theory. A standard axiom of quantum mechanics requires that H be Hermitian because Hermiticity guarantees that the energy spectrum is real and that time evolution is unitary (probability-preserving). This paper describes an alternative formulation of quantum mechanics in which the mathematical axiom of Hermiticity (transpose + complex conjugate) is replaced by the physically transparent condition of space-time reflection (PT) symmetry. If H has an unbroken PT symmetry, then the spectrum is real. Examples of PT-symmetric non-Hermitian quantum-mechanical Hamiltonians are H=p^2+ix^3 and H=p^2-x^4. Amazingly, the energy levels of these Hamiltonians are all real and positive! In general, if H has an unbroken PT symmetry, then it has another symmetry represented by a linear operator C. Using C, one can construct a time-independent inner product with a positive-definite norm. Thus, PT-symmetric Hamiltonians describe a new class of complex quantum theories having positive probabilities and unitary time evolution. The Lee Model is an example of a PT-symmetric Hamiltonian. The renormalized Lee-model Hamiltonian has a negative-norm "ghost" state because renormalization causes the Hamiltonian to become non-Hermitian. For the past 50 years there have been many attempts to find a physical interpretation for the ghost, but all such attempts failed. Our interpretation of the ghost is simply that the non-Hermitian Lee Model Hamiltonian is PT-symmetric. The C operator for the Lee Model is calculated exactly and in closed form and the ghost is shown to be a physical state having a positive norm. The ideas of PT symmetry are illustrated by using many quantum-mechanical and quantum-field-theoretic models.
                Bookmark

                Author and article information

                Journal
                21 August 2013
                Article
                10.1038/nphys2927
                1308.4564
                f5127b4f-28fe-4ffa-a30e-5ebb04a01128

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature Physics, 10, 394 (2014)
                13 Pages, 5 figures, 35 References
                physics.optics cond-mat.mtrl-sci math-ph math.MP physics.class-ph quant-ph

                Comments

                Comment on this article