Emerging evidence indicates that gene products implicated in human cancers often cluster together in “hot spots” in protein-protein interaction (PPI) networks. Additionally, small sub-networks within PPI networks that demonstrate synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the proteome. Here, we demonstrate that integration of these complementary data sources with a “proteomics-first” approach can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease. We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we hypothesize that proteomic targets with significant fold change between phenotype and control may be used to “seed” a search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select proteomic targets having significant expression changes in human colorectal cancer (CRC) from two independent 2-D gel-based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets. Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-networks based on genome-wide screens of mRNA expression in CRC. Cross-classification experiments to predict disease class show excellent performance using only a few sub-networks, underwriting the strength of the proposed approach in discovering relevant and reproducible sub-networks.
Intensive research on cancer has led to an understanding of many individual genes that may be important for the initiation and progression of tumors. However, since cancer is a progressive disease that results from accumulation of multiple mutations likely acting in concert, individual markers can only provide limited insights into cellular mechanisms that underlie tumorigenesis. For this reason, recent studies focus on identification of “sub-network markers”, that is, functionally associated genes that exhibit coordinate changes in molecular expression during cancer progression. However, expression of genes is most frequently interrogated at the mRNA level, which captures functional activity of genes only to a limited extent. Screening of protein expression, on the other hand, provides information on the abundance of functional gene products, but its scale is often limited compared to screening of mRNA expression. In this article, we develop a proteomics-driven computational method that searches for sub-network markers in human colorectal cancer, based on a seed of differentially expressed proteins identified by proteomic screening. Our results show that significant changes in the expression of these proteins is likely to be associated with coordinate changes in the expression of the genes whose products are functionally associated with these proteins. This analysis leads to novel insights in the synergistic processes that underlie tumorigenesis.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.