112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging evidence indicates that gene products implicated in human cancers often cluster together in “hot spots” in protein-protein interaction (PPI) networks. Additionally, small sub-networks within PPI networks that demonstrate synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the proteome. Here, we demonstrate that integration of these complementary data sources with a “proteomics-first” approach can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease. We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we hypothesize that proteomic targets with significant fold change between phenotype and control may be used to “seed” a search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select proteomic targets having significant expression changes in human colorectal cancer (CRC) from two independent 2-D gel-based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets. Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-networks based on genome-wide screens of mRNA expression in CRC. Cross-classification experiments to predict disease class show excellent performance using only a few sub-networks, underwriting the strength of the proposed approach in discovering relevant and reproducible sub-networks.

          Author Summary

          Intensive research on cancer has led to an understanding of many individual genes that may be important for the initiation and progression of tumors. However, since cancer is a progressive disease that results from accumulation of multiple mutations likely acting in concert, individual markers can only provide limited insights into cellular mechanisms that underlie tumorigenesis. For this reason, recent studies focus on identification of “sub-network markers”, that is, functionally associated genes that exhibit coordinate changes in molecular expression during cancer progression. However, expression of genes is most frequently interrogated at the mRNA level, which captures functional activity of genes only to a limited extent. Screening of protein expression, on the other hand, provides information on the abundance of functional gene products, but its scale is often limited compared to screening of mRNA expression. In this article, we develop a proteomics-driven computational method that searches for sub-network markers in human colorectal cancer, based on a seed of differentially expressed proteins identified by proteomic screening. Our results show that significant changes in the expression of these proteins is likely to be associated with coordinate changes in the expression of the genes whose products are functionally associated with these proteins. This analysis leads to novel insights in the synergistic processes that underlie tumorigenesis.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Network-based classification of breast cancer metastasis

            Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer research. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-network-based approach that identifies markers not as individual genes but as subnetworks extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses for pathways involved in tumor progression. Although genes with known breast cancer mutations are typically not detected through analysis of differential expression, they play a central role in the protein network by interconnecting many differentially expressed genes. We find that the subnetwork markers are more reproducible than individual marker genes selected without network information, and that they achieve higher accuracy in the classification of metastatic versus non-metastatic tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.

              Mass spectrometry is a powerful technology for the analysis of large numbers of endogenous proteins. However, the analytical challenges associated with comprehensive identification and relative quantification of cellular proteomes have so far appeared to be insurmountable. Here, using advances in computational proteomics, instrument performance and sample preparation strategies, we compare protein levels of essentially all endogenous proteins in haploid yeast cells to their diploid counterparts. Our analysis spans more than four orders of magnitude in protein abundance with no discrimination against membrane or low level regulatory proteins. Stable-isotope labelling by amino acids in cell culture (SILAC) quantification was very accurate across the proteome, as demonstrated by one-to-one ratios of most yeast proteins. Key members of the pheromone pathway were specific to haploid yeast but others were unaltered, suggesting an efficient control mechanism of the mating response. Several retrotransposon-associated proteins were specific to haploid yeast. Gene ontology analysis pinpointed a significant change for cell wall components in agreement with geometrical considerations: diploid cells have twice the volume but not twice the surface area of haploid cells. Transcriptome levels agreed poorly with proteome changes overall. However, after filtering out low confidence microarray measurements, messenger RNA changes and SILAC ratios correlated very well for pheromone pathway components. Systems-wide, precise quantification directly at the protein level opens up new perspectives in post-genomics and systems biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                January 2010
                January 2010
                15 January 2010
                : 6
                : 1
                : e1000639
                Affiliations
                [1 ]Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
                [2 ]Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
                [3 ]Department of Electrical Engineering & Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America
                [4 ]Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
                University of Illinois at Urbana-Champaign, United States of America
                Author notes

                Conceived and designed the experiments: RKN MK MRC. Performed the experiments: RKN MK. Analyzed the data: RKN MK MRC. Contributed reagents/materials/analysis tools: RKN MRC. Wrote the paper: RKN MK MRC.

                Article
                09-PLCB-RA-0559R3
                10.1371/journal.pcbi.1000639
                2797084
                20090827
                f5050e86-c829-4445-be72-8a1a4f7f7f83
                Nibbe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 May 2009
                : 11 December 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Biotechnology/Protein Chemistry and Proteomics
                Computational Biology/Systems Biology
                Oncology/Gastrointestinal Cancers

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article