3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl 4. A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl 4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P < 0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis ( P < 0.05) and an improvement in the vascular disorganization rate ( P < 0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization.

          NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury.

          Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-beta1-induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-beta1-induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-beta1 in the regulation of EMT in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.

            Fibroblasts are key mediators of fibrosis in the kidney and other organs, but their origin during fibrosis is still not completely clear. Activated fibroblasts likely arise from resident quiescent fibroblasts via epithelial-to-mesenchymal transition and from the bone marrow. Here, we demonstrate that endothelial cells also contribute to the emergence of fibroblasts during kidney fibrosis via the process of endothelial-to-mesenchymal transition (EndMT). We examined the contribution of EndMT to renal fibrosis in three mouse models of chronic kidney disease: (1) Unilateral ureteral obstructive nephropathy, (2) streptozotocin-induced diabetic nephropathy, and (3) a model of Alport renal disease. Approximately 30 to 50% of fibroblasts coexpressed the endothelial marker CD31 and markers of fibroblasts and myofibroblasts such as fibroblast specific protein-1 and alpha-smooth muscle actin. Endothelial lineage tracing using Tie2-Cre;R26R-stop-EYFP transgenic mice further confirmed the presence of EndMT-derived fibroblasts. Collectively, our results demonstrate that EndMT contributes to the accumulation of activated fibroblasts and myofibroblasts in kidney fibrosis and suggest that targeting EndMT might have therapeutic potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pirfenidone in idiopathic pulmonary fibrosis.

              Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease without proven effective therapy. A multicentre, double-blind, placebo-controlled, randomised phase III clinical trial was conducted in Japanese patients with well-defined IPF to determine the efficacy and safety of pirfenidone, a novel antifibrotic oral agent, over 52 weeks. Of 275 patients randomised (high-dose, 1,800 mg x day(-1); low-dose, 1,200 mg x day(-1); or placebo groups in the ratio 2:1:2), 267 patients were evaluated for the efficacy of pirfenidone. Prior to unblinding, the primary end-point was revised; the change in vital capacity (VC) was assessed at week 52. Secondary end-points included the progression-free survival (PFS) time. Significant differences were observed in VC decline (primary end-point) between the placebo group (-0.16 L) and the high-dose group (-0.09 L) (p = 0.0416); differences between the two groups (p = 0.0280) were also observed in the PFS (the secondary end-point). Although photosensitivity, a well-established side-effect of pirfenidone, was the major adverse event in this study, it was mild in severity in most of the patients. Pirfenidone was relatively well tolerated in patients with IPF. Treatment with pirfenidone may decrease the rate of decline in VC and may increase the PFS time over 52 weeks. Additional studies are needed to confirm these findings.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Gastrointestinal and Liver Physiology
                American Journal of Physiology-Gastrointestinal and Liver Physiology
                American Physiological Society
                0193-1857
                1522-1547
                November 01 2017
                November 01 2017
                : 313
                : 5
                : G492-G504
                Affiliations
                [1 ]Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain;
                [2 ]Advanced Optic Microscopy Unit, School of Medicine, Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain;
                [3 ]Liver Unit, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
                [4 ]Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
                Article
                10.1152/ajpgi.00428.2016
                28798084
                f4ee5d25-3078-4d51-9f7c-151e96dc9eff
                © 2017
                History

                Comments

                Comment on this article