22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          R-spondin1 is a secreted regulator of WNT signaling, involved in both embryonic development and homeostasis of adult organs. It can have a dual role, acting either as a mitogen or as a tumor suppressor. During ovarian development, Rspo1 is a key factor required for sex determination and differentiation of the follicular cell progenitors, but is downregulated after birth. In human, increased RSPO1 expression is associated with ovarian carcinomas, but it is not clear whether it is a cause or a consequence of the tumorigenic process. To address the role of Rspo1 expression in adult ovaries, we generated an Rspo1 gain-of-function mouse model. Females were hypofertile and exhibited various ovarian defects, ranging from cysts to ovarian tumors. Detailed phenotypical characterization showed anomalies in the ovulation process. Although follicles responded to initial follicle-stimulating hormone stimulation and developed normally until the pre-ovulatory stage, they did not progress any further. Although non-ovulated oocytes degenerated, the surrounding follicular cells did not begin atresia. RSPO1-induced expression not only promotes canonical WNT signaling but also alters granulosa cell fate decisions by maintaining epithelial-like traits in these cells. This prevents follicle cells from undergoing apoptosis, leading to the accumulation of granulosa cell tumors that reactivates the epithelial program from their progenitors. Taken together, our data demonstrate that activation of RSPO1 is sufficient in promoting ovarian tumors and thus supports a direct involvement of this gene in the commencement of ovarian cancers.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitogenic influence of human R-spondin1 on the intestinal epithelium.

            Several described growth factors influence the proliferation and regeneration of the intestinal epithelium. Using a transgenic mouse model, we identified a human gene, R-spondin1, with potent and specific proliferative effects on intestinal crypt cells. Human R-spondin1 (hRSpo1) is a thrombospondin domain-containing protein expressed in enteroendocrine cells as well as in epithelial cells in various tissues. Upon injection into mice, the protein induced rapid onset of crypt cell proliferation involving beta-catenin stabilization, possibly by a process that is distinct from the canonical Wnt-mediated signaling pathway. The protein also displayed efficacy in a model of chemotherapy-induced intestinal mucositis and may have therapeutic application in gastrointestinal diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of ovarian function: the role of anti-Müllerian hormone.

              Anti-Müllerian hormone (AMH), also known as Müllerian inhibiting substance, is a member of the transforming growth factor beta superfamily of growth and differentiation factors. In contrast to other members of the family, which exert a broad range of functions in multiple tissues, the principal function of AMH is to induce regression of the Müllerian ducts during male sex differentiation. However, the patterns of expression of AMH and its type II receptor in the postnatal ovary indicate that AMH may play an important role in ovarian folliculogenesis. This review describes several in vivo and in vitro studies showing that AMH participates in two critical selection points of follicle development: it inhibits the recruitment of primordial follicles into the pool of growing follicles and also decreases the responsiveness of growing follicles to FSH.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Oncogene
                Nature Publishing Group
                0950-9232
                1476-5594
                12 January 2017
                06 June 2016
                : 36
                : 2
                : 208-218
                Affiliations
                [1 ]University Nice Sophia Antipolis, Inserm, CNRS, iBV , Nice, France
                [2 ]EA 7310, Université de Corte , Corte, France
                [3 ]Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge , Cambridge, UK
                [4 ]Department of Anatomy and Neuroscience, University of Melbourne , Parkville Victoria, Australia
                [5 ]UMR BDR, INRA, ENVA, Université Paris Saclay , Jouy-en-Josas, France
                [6 ]Department of Pathobiology, Faculty of Veterinary Medicine, Dutch Molecular Pathology Center, Utrecht University , Utrecht, The Netherlands
                [7 ]Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen , Groningen, The Netherlands
                [8 ]Department of Human and Animal Physiology, Wageningen University , Wageningen, The Netherlands
                Author notes
                [* ]iBV, Institut Biologie Valrose, University Nice Sophia Antipolis , UFR Sciences, Parc Valrose, 28 Avenue Valrose, 06108 Nice cedex 2, France. E-mail: gillot@ 123456unice.fr (IG) or marie-christine.chaboissier@ 123456unice.fr (M-CC)
                [9]

                These authors contributed equally to this work.

                Article
                onc2016191
                10.1038/onc.2016.191
                5241429
                27270435
                f4e821af-e044-469f-b8d6-4de95523ad4e
                Copyright © 2017 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 14 September 2015
                : 26 February 2016
                : 21 April 2016
                Categories
                Original Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content607

                Cited by10

                Most referenced authors889