In this paper, the authors have addressed the modeling and design of the BLDC Motor-Driven E-Rickshaw based on hybrid energy storage system (HESS) for optimum power management using fuzzy logic. In Hybrid energy sources, solar power is used to charge a battery (primary source) that is effectively coupled to supercapacitor (ancillary source) for peak demand supplies. A power-split control strategy is proposed to control the power supply by using the HESS Fuzzy Logic in different engine operating modes. Projected power layering improves the battery life cycle with the proper use of the Supercapacitor. By providing a new switching algorithm, the DC link voltage is boosted to effectively transfer power to the HESS unit. Fuzzy logic-based HESS provides better performance in electric vehicles, such as deep discharge protection of the battery, and faster acceleration. Also, there is a quick comparison of E-rickshaw solar power with traditional E-rickshaw. The planned design model was simulated by MATLAB®/Simulink environment.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.