22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The R2R3-MYB Factor FhMYB5 From Freesia hybrida Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The flavonoids are important and nourishing compounds for plants and human. The transcription regulation of anthocyanin and proanthocyanidin (PA) biosynthesis was extensively studied in dicot compared with monocot plants. In this study, we characterized the functionality of an R2R3-MYB gene FhMYB5 from the monocotyledonous flowering plant of Iridaceae, Freesia hybrida. Multiple sequence alignment and phylogenetic analysis implied that FhMYB5 was clustered into grapevine VvMYB5b subclade. Correlation analysis indicated that the spatio-temporal expression patterns of FhMYB5 coincided well with anthocyanin and PA accumulations in Freesia per se. Furthermore, transient transfection assays in Freesia protoplasts revealed that the late flavonoid biosynthetic genes (e.g., DFR and LDOX) were slightly up-regulated by FhMYB5 alone, whereas both early and late biosynthetic genes were significantly activated when FhMYB5 were co-infected with either of the two IIIf clade bHLH genes, FhTT8L and FhGL3L. Moreover, these results were further confirmed by co-transfection of FhMYB5 with either of the bHLH genes aforementioned into protoplasts expressing GUS reporter gene driven by Freesia promoters. In addition, the overexpression of FhMYB5 in tobacco and Arabidopsis could also significantly up-regulate the expression of genes participating in the general flavonoid pathway. In conclusion, FhMYB5 was proved to function in the general flavonoid pathway in Freesia. The results implied a function conservation of flavonoid biosynthesis related MYB regulators in angiosperm plants.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana.

          Genetic analyses have demonstrated that together with TTG1, a WD-repeat (WDR) protein, TT2 (MYB), and TT8 (bHLH) are necessary for the correct expression of BANYULS (BAN). This gene codes for the core enzyme of proanthocyanidin biosynthesis in Arabidopsis thaliana seed coat. The interplays of TT2, TT8, and their closest MYB/bHLH relatives, with TTG1 and the BAN promoter have been investigated using a combination of genetic and molecular approaches, both in yeast and in planta. The results obtained using glucocorticoid receptor fusion proteins in planta strongly suggest that TT2, TT8, and TTG1 can directly activate BAN expression. Experiments using yeast two- and three-hybrid clearly demonstrated that TT2, TT8, and TTG1 can form a stable ternary complex. Furthermore, although TT2 and TT8 were able to bind to the BAN promoter when simultaneously expressed in yeast, the activity of the complex correlated with the level of TTG1 expression in A. thaliana protoplasts. In addition, transient expression experiments revealed that TTG1 acts mainly through the bHLH partner (i.e. TT8 or related proteins) and that TT2 cannot be replaced by any other related A. thaliana MYB proteins to activate BAN. Finally and consistent with these results, the ectopic expression of TT2 was sufficient to trigger BAN activation in vegetative parts, but only where TTG1 was expressed. Taken together, these results indicate that TT2, TT8, and TTG1 can form a ternary complex directly regulating BAN expression in planta.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances on the regulation of anthocyanin synthesis in reproductive organs.

            Anthocyanins represent the major red, purple, violet and blue pigments in many flowers and fruits. They attract pollinators and seed dispersers and defend plants against abiotic and biotic stresses. Anthocyanins are produced by a specific branch of the flavonoid pathway, which is differently regulated in monocot and dicot species. In the monocot maize, the anthocyanin biosynthesis genes are activated as a single unit by a ternary complex of MYB-bHLH-WD40 transcription factors (MBW complex). In the dicot Arabidopsis, anthocyanin biosynthesis genes can be divided in two subgroups: early biosynthesis genes (EBGs) are activated by co-activator independent R2R3-MYB transcription factors, whereas late biosynthesis genes (LBGs) require an MBW complex. In addition to this, a complex regulatory network of positive and negative feedback mechanisms controlling anthocyanin synthesis in Arabidopsis has been described. Recent studies have broadened our understanding of the regulation of anthocyanin synthesis in flowers and fruits, indicating that a regulatory system based on the cooperation of MYB, bHLH and WD40 proteins that control floral and fruit pigmentation is common to many dicot species. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Retrotransposon-induced mutations in grape skin color.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                07 January 2019
                2018
                : 9
                : 1935
                Affiliations
                [1] 1Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University , Changchun, China
                [2] 2National Demonstration Center for Experimental Biology Education, Northeast Normal University , Changchun, China
                Author notes

                Edited by: Deyu Xie, North Carolina State University, United States

                Reviewed by: Hiroshi Noguchi, Nihon Pharmaceutical University, Japan; Ai-Xia Cheng, Shandong University, China

                *Correspondence: Li Wang, wanglee57@ 123456163.com Xiang Gao, gaoxiang424@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.01935
                6330306
                30666265
                f484278b-78bd-4fb1-8947-7aaaf16cec5e
                Copyright © 2019 Li, Shan, Zhou, Gao, Yang, Wang, Wang and Gao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 September 2018
                : 12 December 2018
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 68, Pages: 15, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                general flavonoid pathway,myb transcription factor,tobacco,transient transfection assay,protoplast

                Comments

                Comment on this article