18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRP Channels Regulation of Rho GTPases in Brain Context and Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurological and neuropsychiatric disorders are mediated by several pathophysiological mechanisms, including developmental and degenerative abnormalities caused primarily by disturbances in cell migration, structural plasticity of the synapse, and blood-vessel barrier function. In this context, critical pathways involved in the pathogenesis of these diseases are related to structural, scaffolding, and enzymatic activity-bearing proteins, which participate in Ca 2+- and Ras Homologs (Rho) GTPases-mediated signaling. Rho GTPases are GDP/GTP binding proteins that regulate the cytoskeletal structure, cellular protrusion, and migration. These proteins cycle between GTP-bound (active) and GDP-bound (inactive) states due to their intrinsic GTPase activity and their dynamic regulation by GEFs, GAPs, and GDIs. One of the most important upstream inputs that modulate Rho GTPases activity is Ca 2+ signaling, positioning ion channels as pivotal molecular entities for Rho GTPases regulation. Multiple non-selective cationic channels belonging to the Transient Receptor Potential (TRP) family participate in cytoskeletal-dependent processes through Ca 2+-mediated modulation of Rho GTPases. Moreover, these ion channels have a role in several neuropathological events such as neuronal cell death, brain tumor progression and strokes. Although Rho GTPases-dependent pathways have been extensively studied, how they converge with TRP channels in the development or progression of neuropathologies is poorly understood. Herein, we review recent evidence and insights that link TRP channels activity to downstream Rho GTPase signaling or modulation. Moreover, using the TRIP database, we establish associations between possible mediators of Rho GTPase signaling with TRP ion channels. As such, we propose mechanisms that might explain the TRP-dependent modulation of Rho GTPases as possible pathways participating in the emergence or maintenance of neuropathological conditions.

          Related collections

          Most cited references332

          • Record: found
          • Abstract: found
          • Article: not found

          The capsaicin receptor: a heat-activated ion channel in the pain pathway.

          Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRP channels.

            The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRP channels as cellular sensors.

              TRP channels are the vanguard of our sensory systems, responding to temperature, touch, pain, osmolarity, pheromones, taste and other stimuli. But their role is much broader than classical sensory transduction. They are an ancient sensory apparatus for the cell, not just the multicellular organism, and they have been adapted to respond to all manner of stimuli, from both within and outside the cell.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                10 November 2020
                2020
                : 8
                : 582975
                Affiliations
                [1] 1Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile , Santiago, Chile
                [2] 2Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD) , Santiago, Chile
                [3] 3The Wound Repair, Treatment and Health (WoRTH) Initiative , Santiago, Chile
                Author notes

                Edited by: Bilal Çiğ, Ahi Evran University, Turkey

                Reviewed by: Joseph Aslan, Oregon Health and Science University, United States; Lei Shi, Jinan University, China; Denis Rousseau, Université Grenoble Alpes, France

                *Correspondence: Oscar Cerda, oscarcerda@ 123456uchile.cl

                These authors have contributed equally to this work

                This article was submitted to Signaling, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.582975
                7683514
                33240883
                f4834ce5-65c5-4fa3-8a3e-9c6ed6983f14
                Copyright © 2020 Lavanderos, Silva, Cruz, Orellana-Serradell, Saldías and Cerda.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 July 2020
                : 05 October 2020
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 332, Pages: 23, Words: 0
                Funding
                Funded by: Fondo Nacional de Desarrollo Científico y Tecnológico 10.13039/501100002850
                Categories
                Cell and Developmental Biology
                Review

                trp channels,rho gtpases,actin cytoskeleton,trp interactome,gefs,gaps

                Comments

                Comment on this article