53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sustained Inflammasome Activity in Macrophages Impairs Wound Healing in Type 2 Diabetic Humans and Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothesis of this study was that sustained activity of the Nod-like receptor protein (NLRP)-3 inflammasome in wounds of diabetic humans and mice contributes to the persistent inflammatory response and impaired healing characteristic of these wounds. Macrophages (Mp) isolated from wounds on diabetic humans and db/db mice exhibited sustained inflammasome activity associated with low level of expression of endogenous inflammasome inhibitors. Soluble factors in the biochemical milieu of these wounds are sufficient to activate the inflammasome, as wound-conditioned medium activates caspase-1 and induces release of interleukin (IL)-1β and IL-18 in cultured Mp via a reactive oxygen species–mediated pathway. Importantly, inhibiting inflammasome activity in wounds of db/db mice using topical application of pharmacological inhibitors improved healing of these wounds, induced a switch from proinflammatory to healing-associated Mp phenotypes, and increased levels of prohealing growth factors. Furthermore, data generated from bone marrow–transfer experiments from NLRP-3 or caspase-1 knockout to db/db mice indicated that blocking inflammasome activity in bone marrow cells is sufficient to improve healing. Our findings indicate that sustained inflammasome activity in wound Mp contributes to impaired early healing responses of diabetic wounds and that the inflammasome may represent a new therapeutic target for improving healing in diabetic individuals.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The inflammasomes: guardians of the body.

          The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?

            The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that activates caspase 1, leading to the processing and secretion of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and IL-18. The NLRP3 inflammasome is activated by a wide range of danger signals that derive not only from microorganisms but also from metabolic dysregulation. It is unclear how these highly varied stress signals can be detected by a single inflammasome. In this Opinion article, we review the different signalling pathways that have been proposed to engage the NLRP3 inflammasome and suggest a model in which one of the crucial elements for NLRP3 activation is the generation of reactive oxygen species (ROS).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1.

              Mutations in the NALP3/CIAS1/cryopyrin gene are linked to three autoinflammatory disorders: Muckle-Wells syndrome, familial cold autoinflammatory syndrome, and chronic infantile neurologic cutaneous and articular syndrome. NALP3, with the adaptor molecule ASC, has been proposed to form a caspase-1-activating "inflammasome," a complex with pro-IL1beta-processing activity. Here, we demonstrate the effect of NALP3 deficiency on caspase-1 function. NALP3 was essential for the ATP-driven activation of caspase-1 in lipopolysaccharide-stimulated macrophages and for the efficient secretion of the caspase-1-dependent cytokines IL-1alpha, IL-1beta, and IL-18. IL-1beta has been shown to play a key role in contact hypersensitivity; we show that ASC- and NALP3-deficient mice also demonstrate an impaired contact hypersensitivity response to the hapten trinitrophenylchloride. NALP3, however, was not required for caspase-1 activation by Salmonella typhimurium, and NALP3 deficiency only partially protects mice from the lethal effects of endotoxin. These data suggest that NALP3 plays a specific role in the caspase-1 activation pathway.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                March 2014
                13 February 2014
                : 63
                : 3
                : 1103-1114
                Affiliations
                [1] 1Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
                [2] 2Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL
                [3] 3Department of Surgery, University of Illinois at Chicago, Chicago, IL
                Author notes
                Corresponding author: Timothy J. Koh, tjkoh@ 123456uic.edu .
                Article
                0927
                10.2337/db13-0927
                3931398
                24194505
                f481118c-789f-4cac-bd75-f9c309ecbe44
                © 2014 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 13 June 2013
                : 31 October 2013
                Page count
                Pages: 12
                Categories
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article