42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment

      , , , , ,
      Journal of Controlled Release
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer

          The development, perspectives, and challenges of photothermal therapy (PTT) and photoacoustic imaging (PAI) via nanotheranostics for combating cancer. The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toll-like receptors and their crosstalk with other innate receptors in infection and immunity.

            Toll-like receptors (TLRs) are germline-encoded pattern recognition receptors (PRRs) that play a central role in host cell recognition and responses to microbial pathogens. TLR-mediated recognition of components derived from a wide range of pathogens and their role in the subsequent initiation of innate immune responses is widely accepted; however, the recent discovery of non-TLR PRRs, such as C-type lectin receptors, NOD-like receptors, and RIG-I-like receptors, suggests that many aspects of innate immunity are more sophisticated and complex. In this review, we will focus on the role played by TLRs in mounting protective immune responses against infection and their crosstalk with other PRRs with respect to pathogen recognition. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle biointerfacing via platelet membrane cloaking

              Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can negatively impact nanoparticle effectiveness in complex, physiologically relevant systems 1–3 . Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates 4–7 . The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. As compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and are absent of particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Controlled Release
                Journal of Controlled Release
                Elsevier BV
                01683659
                December 2020
                December 2020
                : 328
                : 251-262
                Article
                10.1016/j.jconrel.2020.08.055
                32889053
                f47cbf5a-ee25-4311-8b7e-1dd16d35c372
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article