2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Function of Arbuscular Mycorrhizal Fungi Associated with Drought Stress Resistance in Native Plants of Arid Desert Ecosystems: A Review

      ,
      Diversity
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drought stress profoundly affects native desert plants’ survival and performance. Among all the abiotic stresses, drought is considered a major constraint that influences the structure and functions of desert ecosystems. Arid desert ecosystems are characterized by prolonged drought, extreme temperatures, high solar radiation, water scarcity, high salinity, scarcity of soil nutrients, and poor soil structure. Such extreme desert environments are the toughest regions on earth, which present enormous challenges in conserving plant survival, growth and reproduction. Despite the predominance of these environmental conditions, native desert plant species that grow in desert environments develop complex adaptation strategies and resistance mechanisms to ameliorate the abiotic and biotic stresses in the extreme environments including changes in biochemical, physiological, and morphological levels. Arbuscular mycorrhizal fungi (AMF) form positive symbiotic associations with a considerable percentage of terrestrial plants as their host, induce distinct impacts on plant growth and protect plants from abiotic stresses. However, it is necessary to advance our understanding of the complex mechanisms associated with AMF-mediated and other dark septate endophytes (DSE)-mediated amelioration of native desert plants’ drought stress resistance and associated biological adjustments such as changes in hormone balance, water and nutrient status, stomatal conductance and osmotic adjustment, antioxidant activity, and photosynthetic activity. This review provides an overview of the relationships of mycorrhiza and fungal endophytes involved in drought stress tolerance, summarizing the current knowledge and presenting possible mechanisms mediated by AMF to stimulate drought tolerance associated with native desert plants. We discuss the research required to fill the gaps and provide suggestions for future research.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

          For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycorrhizas and soil structure.

            In addition to their well-recognized roles in plant nutrition and communities, mycorrhizas can influence the key ecosystem process of soil aggregation. Here we review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal fungi (AMF), to soil structure at various hierarchical levels: plant community; individual root; and the soil mycelium. There are a suite of mechanisms by which mycorrhizal fungi can influence soil aggregation at each of these various scales. By extension of these mechanisms to the question of fungal diversity, it is recognized that different species or communities of fungi can promote soil aggregation to different degrees. We argue that soil aggregation should be included in a more complete 'multifunctional' perspective of mycorrhizal ecology, and that in-depth understanding of mycorrhizas/soil process relationships will require analyses emphasizing feedbacks between soil structure and mycorrhizas, rather than a uni-directional approach simply addressing mycorrhizal effects on soils. We finish the discussion by highlighting new tools, developments and foci that will probably be crucial in further understanding mycorrhizal contributions to soil structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Going underground: root traits as drivers of ecosystem processes.

              Ecologists are increasingly adopting trait-based approaches to understand how community change influences ecosystem processes. However, most of this research has focussed on aboveground plant traits, whereas it is becoming clear that root traits are important drivers of many ecosystem processes, such as carbon (C) and nutrient cycling, and the formation and structural stability of soil. Here, we synthesise emerging evidence that illustrates how root traits impact ecosystem processes, and propose a pathway to unravel the complex roles of root traits in driving ecosystem processes and their response to global change. Finally, we identify research challenges and novel technologies to address them.
                Bookmark

                Author and article information

                Journal
                DIVEC6
                Diversity
                Diversity
                MDPI AG
                1424-2818
                March 2023
                March 08 2023
                : 15
                : 3
                : 391
                Article
                10.3390/d15030391
                f4723156-2ed0-4fba-9bd0-32b868e23d5c
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article