10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Printing ferromagnetic domains for untethered fast-transforming soft materials

          Soft materials capable of transforming between three-dimensional (3D) shapes in response to stimuli such as light, heat, solvent, electric and magnetic fields have applications in diverse areas such as flexible electronics1,2, soft robotics3,4 and biomedicine5-7. In particular, magnetic fields offer a safe and effective manipulation method for biomedical applications, which typically require remote actuation in enclosed and confined spaces8-10. With advances in magnetic field control 11 , magnetically responsive soft materials have also evolved from embedding discrete magnets 12 or incorporating magnetic particles 13 into soft compounds to generating nonuniform magnetization profiles in polymeric sheets14,15. Here we report 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation. Our approach is based on direct ink writing 16 of an elastomer composite containing ferromagnetic microparticles. By applying a magnetic field to the dispensing nozzle while printing 17 , we reorient particles along the applied field to impart patterned magnetic polarity to printed filaments. This method allows us to program ferromagnetic domains in complex 3D-printed soft materials, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson's ratios. The actuation speed and power density of our printed soft materials with programmed ferromagnetic domains are orders of magnitude greater than existing 3D-printed active materials. We further demonstrate diverse functions derived from complex shape changes, including reconfigurable soft electronics, a mechanical metamaterial that can jump and a soft robot that crawls, rolls, catches fast-moving objects and transports a pharmaceutical dose.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

            Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Atrial fibrillation as an independent risk factor for stroke: the Framingham Study

                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Applied Materials & Interfaces
                ACS Appl. Mater. Interfaces
                American Chemical Society (ACS)
                1944-8244
                1944-8252
                March 24 2021
                January 05 2021
                March 24 2021
                : 13
                : 11
                : 12668-12678
                Affiliations
                [1 ]Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150001, China
                [2 ]Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, China
                Article
                10.1021/acsami.0c17192
                33397086
                f4444266-c093-4190-a8e7-753ffbb50200
                © 2021
                History

                Comments

                Comment on this article