69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utility of EST-derived SSR in cultivated peanut ( Arachis hypogaea L.) and Arachis wild species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lack of sufficient molecular markers hinders current genetic research in peanuts ( Arachis hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic research. With the development of peanut EST projects, a vast amount of available EST sequence data has been generated. These data offered an opportunity to identify SSR in ESTs by data mining.

          Results

          In this study, we investigated 24,238 ESTs for the identification and development of SSR markers. In total, 881 SSRs were identified from 780 SSR-containing unique ESTs. On an average, one SSR was found per 7.3 kb of EST sequence with tri-nucleotide motifs (63.9%) being the most abundant followed by di- (32.7%), tetra- (1.7%), hexa- (1.0%) and penta-nucleotide (0.7%) repeat types. The top six motifs included AG/TC (27.7%), AAG/TTC (17.4%), AAT/TTA (11.9%), ACC/TGG (7.72%), ACT/TGA (7.26%) and AT/TA (6.3%). Based on the 780 SSR-containing ESTs, a total of 290 primer pairs were successfully designed and used for validation of the amplification and assessment of the polymorphism among 22 genotypes of cultivated peanuts and 16 accessions of wild species. The results showed that 251 primer pairs yielded amplification products, of which 26 and 221 primer pairs exhibited polymorphism among the cultivated and wild species examined, respectively. Two to four alleles were found in cultivated peanuts, while 3–8 alleles presented in wild species. The apparent broad polymorphism was further confirmed by cloning and sequencing of amplified alleles. Sequence analysis of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the microsatellite regions. In addition, a few single base mutations were observed in the microsatellite flanking regions.

          Conclusion

          This study gives an insight into the frequency, type and distribution of peanut EST-SSRs and demonstrates successful development of EST-SSR markers in cultivated peanut. These EST-SSR markers could enrich the current resource of molecular markers for the peanut community and would be useful for qualitative and quantitative trait mapping, marker-assisted selection, and genetic diversity studies in cultivated peanut as well as related Arachis species. All of the 251 working primer pairs with names, motifs, repeat types, primer sequences, and alleles tested in cultivated and wild species are listed in Additional File 1.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).

          A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.

            TGICL is a pipeline for analysis of large Expressed Sequence Tags (EST) and mRNA databases in which the sequences are first clustered based on pairwise sequence similarity, and then assembled by individual clusters (optionally with quality values) to produce longer, more complete consensus sequences. The system can run on multi-CPU architectures including SMP and PVM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genic microsatellite markers in plants: features and applications.

              Expressed sequence tag (EST) projects have generated a vast amount of publicly available sequence data from plant species; these data can be mined for simple sequence repeats (SSRs). These SSRs are useful as molecular markers because their development is inexpensive, they represent transcribed genes and a putative function can often be deduced by a homology search. Because they are derived from transcripts, they are useful for assaying the functional diversity in natural populations or germplasm collections. These markers are valuable because of their higher level of transferability to related species, and they can often be used as anchor markers for comparative mapping and evolutionary studies. They have been developed and mapped in several crop species and could prove useful for marker-assisted selection, especially when the markers reside in the genes responsible for a phenotypic trait. Applications and potential uses of EST-SSRs in plant genetics and breeding are discussed.
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2009
                24 March 2009
                : 9
                : 35
                Affiliations
                [1 ]Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
                [2 ]USDA-ARS, Crop Protection and Management Research Unit, Tifton, Georgia, USA
                Article
                1471-2229-9-35
                10.1186/1471-2229-9-35
                2678122
                19309524
                f4388e86-9340-416d-827b-a4f75cabd64e
                Copyright © 2009 Liang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 October 2008
                : 24 March 2009
                Categories
                Research Article

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article