22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acetylcysteine has No Mechanistic Effect in Patients at Risk of Contrast‐Induced Nephropathy: A Failure of Academic Clinical Science

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Contrast‐induced nephropathy (CIN) is a major complication of imaging in patients with chronic kidney disease (CKD). The publication of an academic randomized controlled trial (RCT; n = 83) reporting oral (N)‐acetylcysteine (NAC) to reduce CIN led to > 70 clinical trials, 23 systematic reviews, and 2 large RCTs showing no benefit. However, no mechanistic studies were conducted to determine how NAC might work; proposed mechanisms included renal artery vasodilatation and antioxidant boosting. We evaluated the proposed mechanisms of NAC action in participants with healthy and diseased kidneys. Four substudies were performed. Two randomized, double‐blind, placebo‐controlled, three‐period crossover studies ( n = 8) assessed the effect of oral and intravenous (i.v.) NAC in healthy kidneys in the presence/absence of iso‐osmolar contrast (iodixanol). A third crossover study in patients with CKD stage III (CKD3) ( n = 8) assessed the effect of oral and i.v. NAC without contrast. A three‐arm randomized, double‐blind, placebo‐controlled parallel‐group study, recruiting patients with CKD3 ( n = 66) undergoing coronary angiography, assessed the effect of oral and i.v. NAC in the presence of contrast. We recorded systemic (blood pressure and heart rate) and renal (renal blood flow (RBF) and glomerular filtration rate (GFR)) hemodynamics, and antioxidant status, plus biomarkers of renal injury in patients with CKD3 undergoing angiography. Primary outcome for all studies was RBF over 8 hours after the start of i.v. NAC/placebo. NAC at doses used in previous trials of renal prophylaxis was essentially undetectable in plasma after oral administration. In healthy volunteers, i.v. NAC, but not oral NAC, increased blood pressure (mean area under the curve (AUC) mean arterial pressure (MAP): mean difference 29 h⋅mmHg, P = 0.019 vs. placebo), heart rate (28 h⋅bpm, P < 0.001), and RBF (714 h⋅mL/min, 8.0% increase, P = 0.006). Renal vasodilatation also occurred in the presence of contrast (RBF 917 h⋅mL/min, 12% increase, P = 0.005). In patients with CKD3 without contrast, only a rise in heart rate (34 h⋅bpm, P = 0.010) and RBF (288 h⋅mL/min, 6.0% increase, P = 0.001) occurred with i.v. NAC, with no significant effect on blood pressure (MAP rise 26 h⋅mmHg, P = 0.156). Oral NAC showed no effect. In patients with CKD3 receiving contrast, i.v. NAC increased blood pressure (MAP rise 52 h⋅mmHg, P = 0.008) but had no effect on RBF (151 h⋅mL/min, 3.0% increase, P = 0.470), GFR (29 h⋅mL/min/1.73m², P = 0.122), or markers of renal injury. Neither i.v. nor oral NAC affected plasma antioxidant status. We found oral NAC to be poorly absorbed and have no reno‐protective effects. Intravenous, not oral, NAC caused renal artery vasodilatation in healthy volunteers but offered no protection to patients with CKD3 at risk of CIN. These findings emphasize the importance of mechanistic clinical studies before progressing to RCTs for novel interventions. Thousands were recruited to academic clinical trials without the necessary mechanistic studies being performed to confirm the approach had any chance of working.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.

          The marginal effects of acute kidney injury on in-hospital mortality, length of stay (LOS), and costs have not been well described. A consecutive sample of 19,982 adults who were admitted to an urban academic medical center, including 9210 who had two or more serum creatinine (SCr) determinations, was evaluated. The presence and degree of acute kidney injury were assessed using absolute and relative increases from baseline to peak SCr concentration during hospitalization. Large increases in SCr concentration were relatively rare (e.g., >or=2.0 mg/dl in 105 [1%] patients), whereas more modest increases in SCr were common (e.g., >or=0.5 mg/dl in 1237 [13%] patients). Modest changes in SCr were significantly associated with mortality, LOS, and costs, even after adjustment for age, gender, admission International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis, severity of illness (diagnosis-related group weight), and chronic kidney disease. For example, an increase in SCr >or=0.5 mg/dl was associated with a 6.5-fold (95% confidence interval 5.0 to 8.5) increase in the odds of death, a 3.5-d increase in LOS, and nearly 7500 dollars in excess hospital costs. Acute kidney injury is associated with significantly increased mortality, LOS, and costs across a broad spectrum of conditions. Moreover, outcomes are related directly to the severity of acute kidney injury, whether characterized by nominal or percentage changes in serum creatinine.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.

            (2002)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits.

              N-acetyl-l-cysteine (NAC) has long been used therapeutically for the treatment of acetaminophen (paracetamol) overdose, acting as a precursor for the substrate (l-cysteine) in synthesis of hepatic glutathione (GSH) depleted through drug conjugation. Other therapeutic uses of NAC have also emerged, including the alleviation of clinical symptoms of cystic fibrosis through cysteine-mediated disruption of disulfide cross-bridges in the glycoprotein matrix in mucus. More recently, however, a wide range of clinical studies have reported on the use of NAC as an antioxidant, most notably in the protection against contrast-induced nephropathy and thrombosis. The results from these studies are conflicting and a consensus is yet to be reached regarding the merits or otherwise of NAC in the antioxidant setting. This review seeks to re-evaluate the mechanism of action of NAC as a precursor for GSH synthesis in the context of its activity as an "antioxidant". Results from recent studies are examined to establish whether the pre-requisites for effective NAC-induced antioxidant activity (i.e. GSH depletion and the presence of functional metabolic pathways for conversion of NAC to GSH) have received adequate consideration in the interpretation of the data. A key conclusion is a reinforcement of the concept that NAC should not be considered to be a powerful antioxidant in its own right: its strength is the targeted replenishment of GSH in deficient cells and it is likely to be ineffective in cells replete in GSH. © 2013.
                Bookmark

                Author and article information

                Contributors
                m.eddleston@ed.ac.uk
                Journal
                Clin Pharmacol Ther
                Clin Pharmacol Ther
                10.1002/(ISSN)1532-6535
                CPT
                Clinical Pharmacology and Therapeutics
                John Wiley and Sons Inc. (Hoboken )
                0009-9236
                1532-6535
                23 February 2022
                June 2022
                23 February 2022
                : 111
                : 6 ( doiID: 10.1002/cpt.v111.6 )
                : 1222-1238
                Affiliations
                [ 1 ] Pharmacology, Toxicology, and Therapeutics University/BHF Centre for Cardiovascular Science University of Edinburgh Edinburgh UK
                [ 2 ] National Poisons Information Service (Edinburgh) Royal Infirmary of Edinburgh Edinburgh UK
                [ 3 ] Edinburgh Clinical Trials Unit University of Edinburgh Edinburgh UK
                [ 4 ] Free Radical Research Facility University of the Highlands & Islands Inverness UK
                [ 5 ] Department of Renal Medicine Royal Infirmary of Edinburgh Edinburgh UK
                [ 6 ] Wellcome Trust Clinical Research Facility Royal Infirmary of Edinburgh Edinburgh UK
                [ 7 ] Department of Cardiology Royal Infirmary of Edinburgh Edinburgh UK
                Author notes
                [*] [* ] Correspondence: Michael Eddleston ( m.eddleston@ 123456ed.ac.uk )

                Article
                CPT2541
                10.1002/cpt.2541
                9306485
                35098531
                f3df5b9b-a823-47e9-b02d-e011f1c4bb3e
                © 2022 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 13 October 2021
                : 10 January 2022
                Page count
                Figures: 7, Tables: 2, Pages: 18, Words: 10954
                Categories
                Article
                Research
                Articles
                Custom metadata
                2.0
                June 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.7 mode:remove_FC converted:22.07.2022

                Pharmacology & Pharmaceutical medicine
                Pharmacology & Pharmaceutical medicine

                Comments

                Comment on this article