33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electromagnetic Tracking in Medicine—A Review of Technology, Validation, and Applications

      IEEE transactions on medical imaging
      Institute of Electrical and Electronics Engineers (IEEE)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer.

          The Calypso 4D Localization System is being developed to provide accurate, precise, objective, and continuous target localization during radiotherapy. This study involves the first human use of the system, to evaluate the localization accuracy of this technique compared with radiographic localization and to assess its ability to obtain real-time prostate-motion information. Three transponders were implanted in each of 20 patients. Eleven eligible patients of the 20 patients participated in a study arm that compared radiographic triangulated transponder locations to electromagnetically recorded transponder locations. Transponders were tracked for 8-min periods. The implantations were all successful, with no major complications. Intertransponder distances were largely stable. Comparison of the patient localization on the basis of transponder locations as per the Calypso system with the radiographic transponder localization showed an average (+/-SD) 3D difference of 1.5 +/- 0.9 mm. Upon tracking during 8 min, 2 of the 11 patients showed significant organ motion (>1 cm), with some motion lasting longer that 1 min. Calypso transponders can be used as magnetic intraprostatic fiducials. Clinical evaluation of this novel 4D nonionizing electromagnetic localization system with transponders indicates a comparable localization accuracy to isocenter, (within 2 mm) compared with X-ray localization.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Magnetic Position and Orientation Tracking System

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accuracy of a wireless localization system for radiotherapy.

              A system has been developed for patient positioning based on real-time localization of implanted electromagnetic transponders (beacons). This study demonstrated the accuracy of the system before clinical trials. We describe the overall system. The localization component consists of beacons and a source array. A rigid phantom was constructed to place the beacons at known offsets from a localization array. Tests were performed at distances of 80 and 270 mm from the array and at positions in the array plane of up to 8 cm offset. Tests were performed in air and saline to assess the effect of tissue conductivity and with multiple transponders to evaluate crosstalk. Tracking was tested using a dynamic phantom creating a circular path at varying speeds. Submillimeter accuracy was maintained throughout all experiments. Precision was greater proximal to the source plane (sigmax = 0.006 mm, sigmay = 0.01 mm, sigmaz = 0.006 mm), but continued to be submillimeter at the end of the designed tracking range at 270 mm from the array (sigmax = 0.27 mm, sigmay = 0.36 mm, sigmaz = 0.48 mm). The introduction of saline and the use of multiple beacons did not affect accuracy. Submillimeter accuracy was maintained using the dynamic phantom at speeds of up to 3 cm/s. This system has demonstrated the accuracy needed for localization and monitoring of position during treatment.
                Bookmark

                Author and article information

                Journal
                10.1109/TMI.2014.2321777
                24816547

                Comments

                Comment on this article