4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pathogenesis of acquired heterotopic ossification: Risk factors, cellular mechanisms, and therapeutic implications

      , , , , , , ,
      Bone
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis.

          Efficient tissue regeneration is dependent on the coordinated responses of multiple cell types. Here, we describe a new subpopulation of fibro/adipogenic progenitors (FAPs) resident in muscle tissue but arising from a distinct developmental lineage. Transplantation of purified FAPs results in the generation of ectopic white fat when delivered subcutaneously or intramuscularly in a model of fatty infiltration, but not in healthy muscle, suggesting that the environment controls their engraftment. These cells are quiescent in intact muscle but proliferate efficiently in response to damage. FAPs do not generate myofibres, but enhance the rate of differentiation of primary myogenic progenitors in co-cultivation experiments. In summary, FAPs expand upon damage to provide a transient source of pro-differentiation signals for proliferating myogenic progenitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concise review: role of mesenchymal stem cells in wound repair.

            Wound healing requires a coordinated interplay among cells, growth factors, and extracellular matrix proteins. Central to this process is the endogenous mesenchymal stem cell (MSC), which coordinates the repair response by recruiting other host cells and secreting growth factors and matrix proteins. MSCs are self-renewing multipotent stem cells that can differentiate into various lineages of mesenchymal origin such as bone, cartilage, tendon, and fat. In addition to multilineage differentiation capacity, MSCs regulate immune response and inflammation and possess powerful tissue protective and reparative mechanisms, making these cells attractive for treatment of different diseases. The beneficial effect of exogenous MSCs on wound healing was observed in a variety of animal models and in reported clinical cases. Specifically, they have been successfully used to treat chronic wounds and stimulate stalled healing processes. Recent studies revealed that human placental membranes are a rich source of MSCs for tissue regeneration and repair. This review provides a concise summary of current knowledge of biological properties of MSCs and describes the use of MSCs for wound healing. In particular, the scope of this review focuses on the role MSCs have in each phase of the wound-healing process. In addition, characterization of MSCs containing skin substitutes is described, demonstrating the presence of key growth factors and cytokines uniquely suited to aid in wound repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle.

              Ectopic fat deposition in skeletal muscle is closely associated with several disorders, however, the origin of these adipocytes is not clear, nor is the mechanism of their formation. Satellite cells function as adult muscle stem cells but are proposed to possess multipotency. Here, we prospectively identify PDGFRalpha(+) mesenchymal progenitors as being distinct from satellite cells and located in the muscle interstitium. We show that, of the muscle-derived cell populations, only PDGFRalpha(+) cells show efficient adipogenic differentiation both in vitro and in vivo. Reciprocal transplantations between regenerating and degenerating muscles, and co-culture experiments revealed that adipogenesis of PDGFRalpha(+) cells is strongly inhibited by the presence of satellite cell-derived myofibres. These results suggest that PDGFRalpha(+) mesenchymal progenitors are the major contributor to ectopic fat cell formation in skeletal muscle, and emphasize that interaction between muscle cells and PDGFRalpha(+) mesenchymal progenitors, not the fate decision of satellite cells, has a considerable impact on muscle homeostasis.
                Bookmark

                Author and article information

                Journal
                Bone
                Bone
                Elsevier BV
                87563282
                March 2023
                March 2023
                : 168
                : 116655
                Article
                10.1016/j.bone.2022.116655
                36581258
                f39e4145-68cf-4637-b56f-458daebe203b
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article