10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electron–phonon scattering has been much suppressed in CVD MoS 2, leading to high carrier mobility improvement up to 60 cm 2 V −1 s −1.

          Abstract

          Mobility engineering is one of the most important challenges that determine the optoelectronic performance of two-dimensional (2D) materials. So far, charged-impurity scattering and electrical-contact barriers have been suppressed through high-κ dielectrics and seamless contact engineering, giving rise to carrier-mobility improvement in exfoliated 2D semiconducting MoS 2. Here we demonstrate a facile and scalable technique to effectively suppress both Coulomb scattering and electron–phonon scattering via the HfO 2 overlayer, resulting in a large mobility improvement in CVD-grown monolayer MoS 2, in excess of 60 cm 2 V −1 s −1. Surface passivation and suppression of Coulomb scattering can partially contribute to the mobility increase. Interestingly, we correlate the mobility increase with phonon quenching through Raman and temperature-dependent mobility measurements. The experimental method is facile, industrially scalable, and renders phonon engineering an additional leverage towards further improvements in 2D semiconductor mobility and device performance.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Strong light-matter interactions in heterostructures of atomically thin films.

          The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.

            The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three-dimensional circuitry. Our work is a step towards the realization of atomically thin integrated circuitry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase-engineered low-resistance contacts for ultrathin MoS2 transistors.

              Ultrathin molybdenum disulphide (MoS2) has emerged as an interesting layered semiconductor because of its finite energy bandgap and the absence of dangling bonds. However, metals deposited on the semiconducting 2H phase usually form high-resistance (0.7 kΩ μm-10 kΩ μm) contacts, leading to Schottky-limited transport. In this study, we demonstrate that the metallic 1T phase of MoS2 can be locally induced on semiconducting 2H phase nanosheets, thus decreasing contact resistances to 200-300 Ω μm at zero gate bias. Field-effect transistors (FETs) with 1T phase electrodes fabricated and tested in air exhibit mobility values of ~50 cm(2) V(-1) s(-1), subthreshold swing values below 100 mV per decade, on/off ratios of >10(7), drive currents approaching ~100 μA μm(-1), and excellent current saturation. The deposition of different metals has limited influence on the FET performance, suggesting that the 1T/2H interface controls carrier injection into the channel. An increased reproducibility of the electrical characteristics is also obtained with our strategy based on phase engineering of MoS2.
                Bookmark

                Author and article information

                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                2018
                2018
                : 10
                : 31
                : 15071-15077
                Affiliations
                [1 ]ICFO – Institut de Ciencies Fotoniques
                [2 ]The Barcelona Institute of Science and Technology
                [3 ]Barcelona
                [4 ]Spain
                [5 ]School of Materials and Energy
                [6 ]National Energy Technology Laboratory
                [7 ]United States Department of Energy
                [8 ]Pittsburgh
                [9 ]USA
                [10 ]Department of Physics and the Quantum Theory Project
                [11 ]University of Florida
                [12 ]Gainesville
                [13 ]Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science
                [14 ]Vanderbilt University
                [15 ]Nashville
                [16 ]ICREA – Institució Catalana de Recerca i Estudis Avançats
                Article
                10.1039/C8NR04416C
                30059107
                f39d1ad8-500a-4ce8-8fcb-3209eb34e58e
                © 2018

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article