11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection and isolation of Shiga-Toxin producing Escherichia coli in flour in Germany between 2014 and 2017

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Low-water activity foods: increased concern as vehicles of foodborne pathogens.

          Foods and food ingredients with low water activity (a(w)) have been implicated with increased frequency in recent years as vehicles for pathogens that have caused outbreaks of illnesses. Some of these foodborne pathogens can survive for several months, even years, in low-a(w) foods and in dry food processing and preparation environments. Foodborne pathogens in low-a(w) foods often exhibit an increased tolerance to heat and other treatments that are lethal to cells in high-a(w) environments. It is virtually impossible to eliminate these pathogens in many dry foods or dry food ingredients without impairing organoleptic quality. Control measures should therefore focus on preventing contamination, which is often a much greater challenge than designing efficient control measures for high-a(w) foods. The most efficient approaches to prevent contamination are based on hygienic design, zoning, and implementation of efficient cleaning and sanitation procedures in the food processing environment. Methodologies to improve the sensitivity and speed of assays to resuscitate desiccated cells of foodborne pathogens and to detect them when present in dry foods in very low numbers should be developed. The goal should be to advance our knowledge of the behavior of foodborne pathogens in low-a(w) foods and food ingredients, with the ultimate aim of developing and implementing interventions that will reduce foodborne illness associated with this food category. Presented here are some observations on survival and persistence of foodborne pathogens in low-a(w) foods, selected outbreaks of illnesses associated with consumption of these foods, and approaches to minimize safety risks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanisms of survival, responses and sources of Salmonella in low-moisture environments

            Some Enterobacteriaceae possess the ability to survive in low-moisture environments for extended periods of time. Many of the reported food-borne outbreaks associated with low-moisture foods involve Salmonella contamination. The control of Salmonella in low-moisture foods and their production environments represents a significant challenge for all food manufacturers. This review summarizes the current state of knowledge with respect to Salmonella survival in intermediate- and low-moisture food matrices and their production environments. The mechanisms utilized by this bacterium to ensure their survival in these dry conditions remain to be fully elucidated, however, in depth transcriptomic data is now beginning to emerge regarding this observation. Earlier research work described the effect(s) that low-moisture can exert on the long-term persistence and heat tolerance of Salmonella, however, data are also now available highlighting the potential cross-tolerance to other stressors including commonly used microbicidal agents. Sources and potential control measures to reduce the risk of contamination will be explored. By extending our understanding of these geno- and phenotypes, we may be able to exploit them to improve food safety and protect public health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection by 5'-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases.

              This paper describes 5'-nuclease PCR assays for detecting eight O-serogroups, H7 flagellar antigen and stx genes from the Shiga toxin-producing Escherichia coli (STEC) associated with the world's most frequent clinical cases. A single set of primers was used to detect the genes stx1 and stx2 in the same reaction by 5'-nuclease PCR. Serotyping by 5'-nuclease PCR of STEC was based on the selection of primers and probes targeting the O-antigen gene clusters of E. coli O26, O55, O91, O111, O113, O157, the eae gene of E. coli O103, the O-island 29 of E. coli O145, and the flagellar H7 antigen gene. Results obtained on a collection of 190 strains indicate that the 5'-nuclease PCR assays used here could serve as a basis for rapid specific stx, O and H7 typing of these major pathogenic serogroups of E. coli. This work provides sensitive and specific tests for the rapid, reliable detection of the main pathogenic E. coli O-serogroups of major public health concern.
                Bookmark

                Author and article information

                Journal
                Journal of Consumer Protection and Food Safety
                J Consum Prot Food Saf
                Springer Science and Business Media LLC
                1661-5751
                1661-5867
                September 2017
                June 13 2017
                September 2017
                : 12
                : 3
                : 245-253
                Article
                10.1007/s00003-017-1113-1
                f38c904d-3481-4cd3-bca5-cbaff9e659b3
                © 2017

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article