There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Objective To estimate the risks and benefits to health of travel by bicycle, using a bicycle sharing scheme, compared with travel by car in an urban environment. Design Health impact assessment study. Setting Public bicycle sharing initiative, Bicing, in Barcelona, Spain. Participants 181 982 Bicing subscribers. Main outcomes measures The primary outcome measure was all cause mortality for the three domains of physical activity, air pollution (exposure to particulate matter <2.5 µm), and road traffic incidents. The secondary outcome was change in levels of carbon dioxide emissions. Results Compared with car users the estimated annual change in mortality of the Barcelona residents using Bicing (n=181 982) was 0.03 deaths from road traffic incidents and 0.13 deaths from air pollution. As a result of physical activity, 12.46 deaths were avoided (benefit:risk ratio 77). The annual number of deaths avoided was 12.28. As a result of journeys by Bicing, annual carbon dioxide emissions were reduced by an estimated 9 062 344 kg. Conclusions Public bicycle sharing initiatives such as Bicing in Barcelona have greater benefits than risks to health and reduce carbon dioxide emissions.
OpenStreetMap, a crowdsourced geographic database, provides the only global-level, openly licensed source of geospatial road data, and the only national-level source in many countries. However, researchers, policy makers, and citizens who want to make use of OpenStreetMap (OSM) have little information about whether it can be relied upon in a particular geographic setting. In this paper, we use two complementary, independent methods to assess the completeness of OSM road data in each country in the world. First, we undertake a visual assessment of OSM data against satellite imagery, which provides the input for estimates based on a multilevel regression and poststratification model. Second, we fit sigmoid curves to the cumulative length of contributions, and use them to estimate the saturation level for each country. Both techniques may have more general use for assessing the development and saturation of crowd-sourced data. Our results show that in many places, researchers and policymakers can rely on the completeness of OSM, or will soon be able to do so. We find (i) that globally, OSM is ∼83% complete, and more than 40% of countries—including several in the developing world—have a fully mapped street network; (ii) that well-governed countries with good Internet access tend to be more complete, and that completeness has a U-shaped relationship with population density—both sparsely populated areas and dense cities are the best mapped; and (iii) that existing global datasets used by the World Bank undercount roads by more than 30%.
Author Summary: Much can be at stake depending on the choice of words used to describe citizen science, because terminology impacts how knowledge is developed. Citizen science is a quickly evolving field that is mobilizing people’s involvement in information development, social action and justice, and large-scale information gathering. Currently, a wide variety of terms and expressions are being used to refer to the concept of ‘citizen science’ and its practitioners. Here, we explore these terms to help provide guidance for the future growth of this field. We do this by reviewing the theoretical, historical, geopolitical, and disciplinary context of citizen science terminology; discussing what citizen science is and reviewing related terms; and providing a collection of potential terms and definitions for ‘citizen science’ and people participating in citizen science projects. This collection of terms was generated primarily from the broad knowledge base and on-the-ground experience of the authors, by recognizing the potential issues associated with various terms. While our examples may not be systematic or exhaustive, they are intended to be suggestive and invitational of future consideration. In our collective experience with citizen science projects, no single term is appropriate for all contexts. In a given citizen science project, we suggest that terms should be chosen carefully and their usage explained; direct communication with participants about how terminology affects them and what they would prefer to be called also should occur. We further recommend that a more systematic study of terminology trends in citizen science be conducted.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.