59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenetic Relationships between Four Salix L. Species Based on DArT Markers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objectives of this study were to evaluate the usefulness of DArT markers in genotypic identification of willow species and describe genetic relationships between four willow species: Salix viminalis, S. purpurea, S. alba and S. triandra. The experimental plant material comprised 53 willow genotypes of these four species, which are popularly grown in Poland. DArT markers seem to identify Salix species with a high degree of accuracy. As a result, the examined species were divided into four distinct groups which corresponded to the four analyzed species. In our study, we observed that S. triandra was very different genetically from the other species, including S. alba which is generally classified into the same subgenus of Salix. The above corroborates the findings of other authors who relied on molecular methods to reveal that the classification of S. triandra to the subgenus Salix was erroneous. The Principal Coordinate Analysis (PCoA) and the neighbor-joining dendrogram also confirmed the clear division of the studied willow genotypes into four clusters corresponding to individual species. This confirmed the usefulness of DArT markers in taxonomic analyses and identification of willow species.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants.

          A compilation was made of 307 studies using nuclear DNA markers for evaluating among- and within-population diversity in wild angiosperms and gymnosperms. Estimates derived by the dominantly inherited markers (RAPD, AFLP, ISSR) are very similar and may be directly comparable. STMS analysis yields almost three times higher values for within-population diversity whereas among-population diversity estimates are similar to those derived by the dominantly inherited markers. Number of sampled plants per population and number of scored microsatellite DNA alleles are correlated with some of the population genetics parameters. In addition, maximum geographical distance between sampled populations has a strong positive effect on among-population diversity. As previously verified with allozyme data, RAPD- and STMS-based analyses show that long-lived, outcrossing, late successional taxa retain most of their genetic variability within populations. By contrast, annual, selfing and/or early successional taxa allocate most of the genetic variability among populations. Estimates for among- and within-population diversity, respectively, were negatively correlated. The only major discrepancy between allozymes and STMS on the one hand, and RAPD on the other hand, concerns geographical range; within-population diversity was strongly affected when the former methods were used but not so in the RAPD-based studies. Direct comparisons between the different methods, when applied to the same plant material, indicate large similarities between the dominant markers and somewhat lower similarity with the STMS-based data, presumably due to insufficient number of analysed microsatellite DNA loci in many studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diversity arrays: a solid state technology for sequence information independent genotyping.

            Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT'. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity arrays technology: a generic genome profiling technology on open platforms.

              In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                December 2013
                11 December 2013
                : 14
                : 12
                : 24113-24125
                Affiliations
                [1 ]Departament of Plant Breeding and Seed Production, University of Warmia and Mazury, Plac Łódzki 3, Olsztyn 10-724, Poland; E-Mails: jerzy.przyborowski@ 123456uwm.edu.pl (J.A.P.); anna.kuszewska@ 123456uwm.edu.pl (A.K.); dariusz.zaluski@ 123456uwm.edu.pl (D.Z.)
                [2 ]Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla ACT 2600, Australia; E-Mail: a.kilian@ 123456diversityarrays.com
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: pawel.sulima@ 123456uwm.edu.pl ; Tel.: +48-89-523-4844; Fax: +48-89-523-4880.
                Article
                ijms-14-24113
                10.3390/ijms141224113
                3876099
                24336112
                f3736454-e832-4c54-9dda-3c074a037ed4
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 21 October 2013
                : 28 November 2013
                : 02 December 2013
                Categories
                Article

                Molecular biology
                genetic diversity,salix,willow,phylogenetic relationships,species identity,diversity arrays technology,dart

                Comments

                Comment on this article